
Anything to Hide?
Studying Minified and Obfuscated Code in the Web
Philippe Skolka

Department of Computer Science
TU Darmstadt

Cristian-Alexandru Staicu
Department of Computer Science

TU Darmstadt

Michael Pradel
Department of Computer Science

TU Darmstadt

ABSTRACT
JavaScript has been used for various attacks on client-side web
applications. To hinder both manual and automated analysis from
detecting malicious scripts, code minification and code obfuscation
may hide the behavior of a script. Unfortunately, little is currently
known about how real-world websites use such code transforma-
tions. This paper presents an empirical study of obfuscation and
minification in 967,149 scripts (424,023 unique) from the top 100,000
websites. The core of our study is a highly accurate (95%-100%)
neural network-based classifier that we train to identify whether
obfuscation or minification have been applied and if yes, using
what tools. We find that code transformations are very widespread,
affecting 38% of all scripts. Most of the transformed code has been
minified, whereas advanced obfuscation techniques, such as encod-
ing parts of the code or fetching all strings from a global array, affect
less than 1% of all scripts (2,842 unique scripts in total). Studying
which code gets obfuscated, we find that obfuscation is particularly
common in certain website categories, e.g., adult content. Further
analysis of the obfuscated code shows that most of it is similar to
the output produced by a single obfuscation tool and that some
obfuscated scripts trigger suspicious behavior, such as likely fin-
gerprinting and timing attacks. Finally, we show that obfuscation
comes at a cost, because it slows down execution and risks to pro-
duce code that changes the intended behavior. Overall, our study
shows that the security community must consider minified and
obfuscated JavaScript code, and it provides insights into what kinds
of transformations to focus on. Our learned classifiers provide an
automated and accurate way to identify obfuscated code, and we
release a set of real-world obfuscated scripts for future research.

CCS CONCEPTS
• Security and privacy → Web application security; Software
reverse engineering; Intrusion/anomaly detection and malware miti-
gation.

KEYWORDS
obfuscation; web security; empirical study; machine learning

ACM Reference Format:
Philippe Skolka, Cristian-Alexandru Staicu, and Michael Pradel. 2019. Any-
thing to Hide? Studying Minified and Obfuscated Code in the Web . In
Proceedings of the 2019 World Wide Web Conference (WWW ’19), May 13–17,
2019, San Francisco, CA, USA, Jennifer B. Sartor, Theo D’Hondt, and Wolf-
gang De Meuter (Eds.). ACM, New York, NY, USA, Article 4, 11 pages.
https://doi.org/10.1145/3308558.3313752

WWW ’19, May 13–17, 2019, San Francisco, CA, USA
2019. ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313752

1 INTRODUCTION
JavaScript has become the dominant programming language for
client-side web applications and nowadays is used in the vast major-
ity of all websites. The popularity of the language makes JavaScript
an attractive target for various kinds of attacks. For example, cross-
site scripting attacks try to inject malicious JavaScript code into
websites [14, 17, 28]. Other attacks aim at compromising the under-
lying browser [6, 7] or extensions installed in a browser [11, 12], or
they abuse particular web APIs [19, 26, 30].
An effective way to hide the maliciousness of JavaScript code are
code transformations that preserve the overall behavior of a script
while making it harder to understand and analyze. Such transfor-
mations affect both manual code inspection, e.g., because the code
becomes harder to understand, and automated code analysis, e.g.,
because the malicious behavior is disguised as apparently harmless
operations. There exist a variety of code transformations, ranging
from renaming of local variables to more complex code changes that
affect the control flow and data flow. We refer to transformations
aimed at reducing code size, typically by renaming local variables
to shorter names, as minification. In contrast, we refer to more
complex transformations aimed at hindering the understanding
and analysis of code as obfuscation. It is important to note that mini-
fication and obfuscation may be used for legitimate reasons, such
as reducing code size or protecting intellectual property. However,
independently of what the reason for transforming code is, it affects
the ability of human and automated security analysis.
Despite the potential impact that minification and obfuscation may
have on security analysis, little is currently known about how real-
world websites use such transformations. A better understanding
of what kinds of code transformations are applied in the wild could
guide future efforts on making the web more secure. In partic-
ular, knowing how widespread minification and obfuscation are
helps future analyses to focus on relevant problems. Moreover,
understanding what kinds of transformation tools are the most
popular enables the development of targeted defense techniques.
Unfortunately, to the best of our knowledge, there currently is no
comprehensive study of code transformations in the web.
This paper presents a large-scale empirical study of minification
and obfuscation in client-side web code. The study involves 967,149
JavaScript files gathered from the top 100,000 websites. We analyze
how many of these scripts are transformed through minification
and obfuscation, respectively, and which tools are used for these
transformations. Moreover, we study which kinds of scripts are
transformed particularly often and inspect the runtime behavior
of some obfuscated scripts. Finally, we analyze which costs code
transformation may incur by assessing to what extent popular
transformation tools influence the performance and correctness of
JavaScript code.

https://doi.org/10.1145/3308558.3313752
https://doi.org/10.1145/3308558.3313752

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Philippe Skolka, Cristian-Alexandru Staicu, and Michael Pradel

Given the large-scale nature of our study, we rely, at least in parts,
on automation to answer the above questions. To this end, we
present a neural network-based classifier that identifies JavaScript
code with particular properties. For example, the classifier can be
trained to distinguish transformed from non-transformed code,
minified from obfuscated code, and to identify code transformed
with particular tools. We show that the classification has very high
accuracy for these tasks, providing an effective way to identify
particular kinds of scripts across all studied websites.
The study addresses six research questions.
RQ1: How prevalent are minification and obfuscation in client-side
JavaScript code? Answering this question is important to determine
whether code transformations should be considered by security
analyses at all, and what kinds of transformations such analyses
should focus on. We find that code transformations are very wide-
spread, affecting 38% of all client-side scripts. The vast majority of
the transformed code has been minified, whereas less than 1% of
all code is obfuscated. Even though the percentage of obfuscated
code is low, the absolute number of obfuscated scripts (2,842) still
motivates work on de-obfuscation, as these scripts arguably are the
most interesting for security analysis.
RQ2: Which tools are used to obfuscate code in the web? There is
a variety of tools available for obfuscating JavaScript code. Un-
derstanding which tools and transformation techniques are used
most often in practice helps prioritize efforts toward dealing with
transformed code. Our study finds that a single obfuscation tool
accounts for most obfuscated scripts in the web: 2,551 obfuscated
scripts resemble the output of the Daft Logic Obfuscator, an on-
line tool that is available free of charge, motivating future work to
consider obfuscation techniques implemented by this tool.
RQ3: Does the prevalence of code transformations differ across different
kinds of scripts or websites? Since there are many possible reasons
for minifying and obfuscating code, it is interesting to ask whether
specific kinds of scripts are transformed more often than others.
We find that third-party scripts, i.e., code loaded from another
website than the one visited by a user, is about twice as likely to be
transformed than scripts loaded from the visited website. Possible
reasons for this distribution include that content delivery networks
minify libraries to reduce network traffic, and that advertisement
and tracking code is transformed to protected intellectual property.
Studying the prevalence of obfuscation in different categories of
websites shows that some categories, e.g., sites with adult content,
contain more obfuscated scripts than an average website.
RQ4: What kind of behavior do developers hide behind obfuscation?
To further understand the reasons for obfuscating code, we analyze
the execution behavior of obfuscated scripts and manually inspect
a subset of them. We find that many of the obfuscated scripts access
APIs that are typically used for tracking, fingerprinting, cookie
syncing, or cookie theft. We also identify a script with an unusually
high number of calls to performance.now, which could be because
the script is exploiting some timing channel.
The final two questions are about potential costs that applying code
transformations may incur.
RQ5: How do code transformations affect the performance of code?
We find that most obfuscation tools negatively affect performance,
i.e., they slow down the execution of the code. In contrast, most

minification tools either have no effect on performance or speed up
the execution of the code. These findings show that complex code
transformations may come at a non-negligible cost, motivating
future work on performance-invariant obfuscation.
RQ6: How do code transformations affect the correctness of code?
Developers applying an automated code transformation tool may
naively assume that the transformation preserves the overall se-
mantics of the code. However, we find that existing tools for both
minification and obfuscation often produce corrupt code that be-
haves differently from the original code. Only about half of the
transformed code completely preserves the original semantics, mo-
tivating future work on more reliable transformation tools.
The results of our work are relevant for at least four groups of
people. First, the study provides insights for developers of security-
related program analyses, e.g., static malware checkers and de-
obfuscators. In particular, we show that transformed code must
be considered by any analysis aimed at real-world, client-side
JavaScript code, and we show what kinds of transformations are
the most important in practice. Second, the study affects develop-
ers of obfuscation and minification tools by highlighting the costs
that using state-of-the-art tools imply. Third, the study informs
users of transformation tools about the effects that using such tools
may have on the performance and correctness of code. Finally, the
classifier that we develop to conduct our study enables researchers
interested in analyzing real-world JavaScript code to focus on code
relevant for their research. For example, the classifier can accurately
identify obfuscated code among hundreds of thousands of scripts.
In summary, this paper contributes the following:
• The first large-scale study of minification and obfuscation in
real-world, client-side web application code.

• Insights about how code transformations are used in practice,
including evidence that minification is widespread, that more
complex obfuscation is rather rare yet non-negligible, and that
particular obfuscation techniques clearly dominate.

• An automated classification technique that accurately identifies
different kinds of transformed code. The technique is useful to
select particular scripts, e.g., those with obfuscated code, for
further analysis.

• A benchmark of obfuscated JavaScript files gathered from var-
ious popular websites, which we provide for future work on
de-obfuscating, analyzing, and understanding obfuscated code.

2 CLASSIFICATION OF SCRIPTS
Addressing RQ1, RQ2, RQ3, and RQ4 at the scale of hundreds of
thousands of scripts requires an automated technique to determine
whether a script has been transformed, and if yes, in what way.
While a skilled human could manually label files with high accu-
racy, that approach does not scale to the amount of JavaScript code
considered in our study. One approach to address this challenge
would be to define a set of heuristics, e.g., based on idiosyncrasies
of specific transformation tools, and to determine the properties of
code based on these heuristics. Unfortunately, the heuristics-based
approach relies on human expertise for identifying code properties
that are unique to specific transformation techniques, and it cannot
be easily adapted to other transformation tools. Instead, we address
the challenge of determining properties of code through machine

Minified and Obfuscated Code in the Web WWW ’19, May 13–17, 2019, San Francisco, CA, USA

learning. This section presents two machine learning-based ap-
proaches for classifying JavaScript code. We use the more effective
of the two approaches as the basis of our study.

2.1 Classification Tasks
We address three classification tasks.

TRANS. The first task, called TRANS, is to determine whether a
given piece of JavaScript code has been transformed by any mini-
fication or obfuscation tool. We train classifiers for this task with
examples of regular code, which has not been processed by any
transformation tool, and with examples of transformed code, which
has been processed by a minification or obfuscation tool.

OBFUS. The second task, called OBFUS, is to determine whether a
given piece of JavaScript code has been obfuscated. We train OBFUS
classifiers with examples of regular code, examples of minified but
not obfuscated code, and examples of obfuscated code.

TOOL-X. The third task, called TOOL-X, is to determine for a given
piece of transformed JavaScript code what tool has been used to
transform the code. Because popular minification tools apply very
similar transformations, we focus on obfuscation tools for this task.

2.2 Training Data for Learning Classifiers
To train the classifiers, we start with a set of human-written, or
regular, JavaScript files and then create transformed variants of
these files.

2.2.1 Corpus of Regular Code. The regular code examples are a
subset of a corpus of 150,000 JavaScript files provided by others [24],
which consists of human-written, non-transformed code from open-
source projects. We remove from this corpus all files with a size less
than 1kB, as they provide very little information for the classifiers to
make an informed decision, and files with a size greater than 10kB,
to keep the memory consumption during training at a manageable
level.

2.2.2 Program Transformation Tools. Our study is based on popular
minification and obfuscation tools. We select tools that are publicly
available and widely used, as reported, e.g., by publicly visible
download numbers.

Minification. We consider seven minification tools (the names in
parentheses are the abbreviationwe use throughout the paper): Ugli-
fyJS (uglify), babel-minify (babel), Google Closure Compiler (clo-
sure), javascript-minifier.com (jsmincom), Matthias Mullie Minify
(mmminify), and YUI Compressor (yui). These tools reduce the
program size mainly by performing white spaces reduction and
identifiers shortening. In addition, some tools, e.g., closure, also
perform optimizations, such as inlining or constant folding.

Obfuscation. We consider five obfuscation tools: javascript-obfuscator
(jsobf), javascriptobfuscator.com (jsobfcom), DaftLogic Obfuscator
(daft-logic), jfogs, and JSObfu. The result of our tool search also
included JSFuck and javascript2img.com, but we exclude them as
they either are unable to process large code files or produce invalid
JavaScript code. Table 1 shows which transformation techniques the
tools use, as reported in previous work and in the tool’s documen-
tation. The two most common obfuscation techniques are identifier

Table 1: Obfuscation tools and transformation techniques.

Transformation techniques Obfuscation tools

jso
bf

jso
bf
co
m

jfo
gs

JS
O
bf
u

da
ft-
lo
gi
c

String splitting ✓ ✓
Keyword substitution
String concatenation ✓
Encoding the entire code ✓
Encrypting the entire code
Identifier encoding ✓ ✓ ✓ ✓ ✓
String encoding ✓ ✓ ✓
Dead code injection ✓
Control flow flattening ✓
String array ✓ ✓ ✓ ✓
Code protecting techniques ✓

encoding, usually using HEX encoding, and storing strings in a
global array.

Configurations. Most tools provide options to configurewhich trans-
formation techniques to apply. Since different configurations may
result in a different transformed code, we use multiple configura-
tions for each tool. In total, we consider 15 configurations for the
obfuscation tools and 31 configurations for the minification tools.
Together with the regular version of a JavaScript file, this setup
yields 47 variants of each file.

2.2.3 Generation of Training Data. As training data for a specific
classifier, we randomly sample 10,000 files from the corpus of regu-
lar files and apply transformations tools to these files. For all three
tasks, we train the classifiers with an even split of two classes of
code, i.e., half of the training examples are expected to be classified
as positive and negative, respectively. For the TRANS classifier, we
apply the minification and obfuscation tools to each code example,
using each tool equally often. For the OBFUS classifier, we obtain
examples of obfuscated code by applying one of the obfuscation
tools to each code example, using each tool equally often. To obtain
examples of non-obfuscated code, we use regular and minified code.
Since OBFUS gets trained to distinguish obfuscated code from both
minified code and regular code, it can be used not only to identify
obfuscated code among any code, but also to classify transformed
code into minified versus obfuscated code. For the TOOL-X clas-
sifiers, we use examples of code transformed by tool X and code
examples that are either not transformed or transformed by other
tools.

2.3 Classification via Identifier Frequencies
The following describes the first of two approaches to learn clas-
sifiers. The approach exploits the fact that both minification and
obfuscation tools replace the original identifiers, e.g., names of local
variables, with other identifiers. Because many transformation tools
use specific identifiers, a skilled human can determine whether a
tool has been used and if yes, which tool. The learning approach is
based on this observation.
The approach consists of two main steps. The first step is to ex-
tract a feature vector for a given JavaScript file. The feature vector

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Philippe Skolka, Cristian-Alexandru Staicu, and Michael Pradel

Figure 1: Tree-based convolutional neural network [18].
Rectangles with dots are vector representations of AST
nodes; triangles represent trees.

summarizes what identifier names occur in the file and how fre-
quent each name is. To this end, we tokenize the code and extract
all identifiers. Based on all identifiers that occur in the training
data, we determine a vocabulary of the 30,000 most common identi-
fiers. Then, we transform each script into a feature vector of length
30,000, where each element represents a specific identifier. The
element that represents a specific identifier is the tf-idf value of
the identifier, i.e., the result of multiplying the term frequency with
the inverted document frequency of an identifier. To compute the
term frequency for a given script, we count the occurrences of each
identifier and normalize these with the number of occurrences of
the most frequent identifier in the script. For the inverted document
frequency we divide, for each identifier, the total number of scripts
in the training dataset by the number of scripts that contain the
identifier and compute the logarithm of the resulting value.
The second step is to classify the feature vector of a JavaScript file
using a support vector machine (SVM). We use SVMs because they
are effective for binary classification problems. We achieve the best
results for the SVM when using the radial basis function kernel and
setting the penalty term C to 5. The classifier is implemented in
Python using the machine learning library scikit-learn1.

2.4 Classification via AST Convolution
The identifier-based classifier described above is conceptually sim-
ple but limited to a single feature of source code, i.e., identifier
names. Our second classification approach addresses this limitation
through a neural network that classifies abstract syntax trees (ASTs).
ASTs are a useful representation of code because they preserve all
relevant information while making the structural relationships be-
tween code elements explicit. To classify ASTs, we build upon a
neural network architecture proposed by Mou et al. [18]. We adapt
their approach by enriching traditional ASTs with additional infor-
mation that proves useful for our classification tasks.

2.4.1 Background: Tree-based Convolutional Neural Network. We
build upon an existing machine learning architecture for classify-
ing trees, e.g., ASTs, based on a convolutional neural network. The
network transforms a given tree into a continuous vector represen-
tation and then performs the actual classification task on the vector
representation. The vector representation is learned in such a way
that similar trees are represented by similar vectors. Figure 1 shows
1http://scikit-learn.org/stable

the five main steps involved in classifying trees. First, each node is
transformed into a vector, where nodes with the same label, e.g.,
two CallExpression nodes, are mapped to the same vector. Second,
a neural network layer (“coding layer”) summarizes the children of
a node and the node itself into the parent’s vector. Third, several
convolution layers extract features from the tree by sliding a feature
detector over fixed-depth subtrees of the tree, which yields several
trees of features. Fourth, a pooling layer summarizes these trees
of features into a single tree again. Finally, all nodes of the new
tree are passed through a fully connected hidden layer that outputs
the classification result. During training with stochastic gradient
descent, the parameters of the network are adapted to minimize
a loss function that expresses how much the network’s classifica-
tion differs from the expected classification. Our implementation
of the tree-based convolutional neural network is based on an im-
plementation by Creston Bunch2. The architecture has previously
been shown to be effective for identifying code that implements a
particular algorithm [18]. We are the first to use it for identifying
minified and obfuscated code.

2.4.2 Enriched ASTs. One possible approach is to apply the neural
network to standard JavaScript ASTs. During initial experiments,
we find this approach to provide a classifier with promising yet not
fully satisfying accuracy. In particular, the classifiers struggle to
learn from two features that are useful for a human but not well
represented in standard ASTs: whitespace and specific properties
of identifier names. Motivated by this observation, we enrich the
standard JavaScript ASTs in two ways.

Whitespace. The first enrichment is to add information about white-
space into ASTs. Usually, this information is abstracted away as
it is irrelevant for most scenarios where ASTs are used. To recog-
nize minified and obfuscated code, though, whitespace is relevant
because both minification and obfuscation tools often remove all
or at least some whitespace. We enrich ASTs with whitespace in-
formation as follows: Whenever two nodes in the AST correspond
to successive elements in the source code, we check whether any
whitespace exists between the two code elements. If no such white-
space exists, then we insert a new “no whitespace” node between
the two adjacent nodes; otherwise, we leave the nodes unchanged.

Length of identifiers. The second enrichment of ASTs is to add infor-
mation about the length of identifiers, i.e., the number of characters
of an identifier name. The motivation is that several obfuscation
tools replace identifiers with less understandable identifiers of a
fixed length that differs from tool to tool. In contrast, regular code
usually consists of natural identifiers that have variable lengths.
We encode this information by modifying every “Identifier” AST
node by appending the length of the identifier to the node label, e.g.,
“Identifier3” for an identifier foo. To deal with unusually long iden-
tifiers, any length exceeding 30 characters is simply represented by
a single, special label.

2.5 Accuracy of Classifiers
To decide which of the two classifiers to use for the study, we
measure their classification accuracy on previously unseen sets of

2https://github.com/crestonbunch/tbcnn

Minified and Obfuscated Code in the Web WWW ’19, May 13–17, 2019, San Francisco, CA, USA

Table 2: Testing accuracies for different classifiers and clas-
sification tasks.

Classifier Task

TRANS OBFUS TOOL-X

Identifier frequencies 76.40% 80.07% 64.44%–82.86%
AST convolution 95.06% 99.96% 99.68–100.00%

validation data. To this end, we randomly select 2,500 files from the
non-transformed code (disjoint from the files used for generating
training data), and create transformed variants of them, as described
in Section 2.2.3. We then measure the accuracy for each classifier
and task, i.e., the percentage of predictions that match the expected
classification.
Table 2 summarizes the accuracy results for the two classifiers
presented in Sections 2.3 and 2.4. Overall, the results show that
both classifiers are effective (for comparison, a random decision
would achieve 50% accuracy) and that the AST convolution-based
classifier has the by far highest accuracy for all three tasks. In
particular, the AST convolution-based classifier achieves more than
95% accuracy for all three tasks, and at least 99.68% accuracy for
the OBFUS and TOOL-X tasks. In contrast, the classifier based on
identifier frequencies performs poorly for some of the TOOL-X
tasks, with an accuracy as low as 64.44% for one of the obfuscation
tools.
To better understand why one classifier performs better than the
other, we check how many of the different kinds of training ex-
amples the classifiers identify correctly. We find that the identifier
frequency-based classifier is successful at identifying minified and
obfuscated code but often fails to correctly identify regular code. For
example, for the OBFUS task, the classifier correctly labels 99.92%
of all obfuscated examples, but classifies only 59.47% of all non-
obfuscated examples correctly. A detailed analysis of the identifiers
that occur in obfuscated and non-obfuscated code explains these
results: Many obfuscation tools use very characteristic identifiers,
whereas regular code contains a wide range of natural identifiers.
For example, jfogs creates many variables names fog followed by
some number, and jsobf uses a similar pattern but also hex-encodes
the identifiers.
To validate that enriching AST is beneficial over running the neural
network on default JavaScript ASTs, we compare the accuracies of
both variants of the AST-based classifier. We find that the default
ASTs yield significantly lower accuracies than the enriched ASTs.
For example, for the OBFUS task, the default ASTs give only 75.43%
accuracy, which is not only much lower than with enriched ASTs
but also lower than the classifier based on identifier frequencies.
Overall, we conclude from the accuracy results that the AST convo-
lution-based classifier is highly effective at identifying transformed
code, obfuscated code, and code obfuscated with a particular tool,
making it a solid basis for studying JavaScript code at a large scale.

3 STUDYING DEPLOYED CLIENT-SIDE CODE
Based on the classifiers described above, this section presents the
setup and results of our study of minification and obfuscation in
deployed, client-side JavaScript code.

3.1 Study Data: Deployed, Client-Side
JavaScript Code

To gather a representative set of JavaScript code used in real-world
websites, we crawl the top 100,000 most popular websites, as listed
by the Majestic Million3 service. Our crawler visits each website,
waits five seconds to enable dynamically loaded code to arrive, and
then saves all scripts. We consider both code loaded via .js files and
code loaded via inline scripts, i.e., via <script> tags without a src

attribute. For the latter, the crawler copies the code between the
tags into a new file. To speed up the loading of websites, we do not
fetch resources other than scripts and HTML code.
The crawling yields 2,335,207 scripts from 85,001 websites in total.
14,999 websites are not accessible due to timeout errors and other
reasons. Due to the limited size of ASTs that the classifiers can
handle in reasonable time, we remove scripts with a size exceeding
40kB. This results in 1,861,489 scripts. We further remove scripts
that are smaller than 512 bytes because we observe that such small
scripts are hard to classify even for human subjects due to the
limited number of clues that can aid the distinction between trans-
formed and original scripts. Finally, we remove all those scripts for
which the AST does not contain at least one "CallExpression" node.
This is because such scripts are very often just configuration files
in the JSON format. Applying these filters yields a set of 967,149
scripts. However, different websites may use the same JavaScript
code, e.g., third-party libraries, thus the set of scripts contains du-
plicate files. In this study we are mostly concerned with the nature
of the code on the web and not so much with its frequency on
different websites, hence we remove all duplicates. This filtering
leaves a final set of 424,023 unique JavaScript files, which we
use for the study.

3.2 Accuracy of Classifiers on Study Data
Section 2.2.2 has established that our classifiers are highly accurate
on code transformed by the tools used to generate the training data.
To validate that the classifiers are effective also on the study data,
for which we do not know which (if any) tools have been used, and
to validate that the classification results match the classification
that a skilled human could produce, we perform an experiment
with JavaScript developers. The experiment involves five advanced
developers, who have extensive experience in writing JavaScript
and in understanding real-world JavaScript code.
The goal of the experiment is to gather ground truth to compare
our classifiers against. During the experiment, each developer per-
forms two tasks, which validate the TRANS and OBFUS classifiers,
respectively. First, to validate the TRANS classifier, we show to
each developer 50 scripts labeled by the classifier as transformed
and 50 scripts labeled by the classifier as not transformed. We ran-
domly sample the scripts from all 424,023 scripts in the study data.
For each script, the developers are asked to answer the following
question: “Is this human-written or generated/transformed code?”
Second, to validate the OBFUS classifier, we repeat the same setup
with 50 scripts labeled as obfuscated by the classifier and 50 scripts
labeled as not obfuscated by the classifier. For these scripts, the
developers are asked to answer the question: “Is this obfuscated or

3https://de.majestic.com/reports/majestic-million

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Philippe Skolka, Cristian-Alexandru Staicu, and Michael Pradel

Obfuscated

Transformed

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

True negatives False negatives Gray area negatives
Gray area positives False positives True positives

Figure 2: Effectiveness of the TRANS and OBFUS classi-
fiers judged against the ground truth obtained from expe-
rienced JavaScript developers. The gray area depicts scripts
for which the developers did not agree on the classification
label.

not obfuscated code? If the file is transformed but you are not sure
if it is obfuscated, try to decide whether the developer transformed
it for hindering understanding.” To avoid any influence from file
names, such as “jquery.min.js”, we hide the original file names from
the developers and assign some generic names to the files.
After aggregating the results of the experiment, we compute the
inter-rater agreement, which quantifies the extent to which the
participants agree with each other. More precisely, we compute Co-
hen’s kappa for each pair of participants. The pairwise agreement
ranges between 0.64 and 0.93, with an average of 0.81, which is
considered a very high agreement. To account for possible mistakes
made by individual developers, we consider a 4-out-of-5 majority
vote. That is, if at least four of the developers agree on whether a
given script is transformed/obfuscated, then we consider this deci-
sion as the ground truth. If no such majority is reached, then we
consider the scripts to be in a gray area, where even humans have
a hard time judging whether the script has been transformed/ob-
fuscated.
Figure 2 shows the results of the developer experiment. The blue
area depicts true positives, i.e., scripts where the classifier and
the developers agree on the scripts being transformed/obfuscated.
Likewise, the orange area depicts true negatives, i.e., scripts where
the classifier and the developers agree on the scripts being not
transformed/obfuscated. Overall, the automated classifiers largely
match the decisions by the developers. In addition, the TRANS
classifier has 13% false negatives, i.e., it misses a few scripts that
developers consider to be transformed, and the OBFUS classifier
has 2% false positives, i.e., it sometimes incorrectly labels a non-
obfuscated script as obfuscated. The gray parts in the middle of the
figure, six scripts for TRANS and one for OBFUS, are the gray area,
where the developers disagreed with each other.
Overall, we conclude from the experiment with developers that
our automated classifiers match human classifications for the over-
whelming majority of scripts. Given the 13% false negative rate
of TRANS, one should interpret our results about the number of
transformed scripts as a slight under-approximation of the actual
number.

3.3 RQ1. Prevalence of Transformed Code
To address the question of how prevalent minified and obfuscated
code is in client-side JavaScript code, we classify all downloaded
scripts using the TRANS and OBFUS classifiers. Table 3 summa-
rizes the results. We find that 38.5% of all scripts have gone through

Table 3: Prevalence of transformed code.

TRANS on all scripts: Regular 61.5%
Transformed 38.5%

OBFUS on all scripts: Regular or minified 99.33%
Obfuscated 0.67%

OBFUS on transformed scripts: Minified 98.31%
Obfuscated 1.69%

Table 4: Tools used to obfuscate scripts.

Classifier % detected
scripts

% other
scripts

detected
scripts

TOOL-JSObfu 0.01% 99.99% 3
TOOL-jsobfcom 0.04% 99.96% 149
TOOL-jfogs 0.02% 99.98% 0
TOOL-daft-logic 0.60% 99.40% 2,551
TOOL-jsobf 0.02% 99.98% 71

some kind of transformation, including both minification and ob-
fuscation. In contrast, only 0.67% of all scripts (2,842 scripts) have
been obfuscated. Applying the OBFUS classifier to those scripts
that are classified as transformed confirms the above numbers: The
vast majority of transformed scripts are not obfuscated, i.e., they
have only been minified. These numbers show that minification is
popular in the web. This finding is in line with the fact that many
JavaScript libraries and frameworks include a minification step in
their deployment pipeline to reduce the file size and hence the
transmission time. A possible explanation for the low number of
obfuscated scripts is that obfuscation comes at a cost (discussed in
detail in Section 3.7 and 3.8), and therefore it is used only when de-
velopers want to hide some behavior. Despite the surprisingly low
number of obfuscated scripts, these scripts provide an interesting
target for further analysis, and we provide them as a benchmark
for future work.4

Finding 1. Around 38% of the scripts in the web are trans-
formed, most of which are minified but not obfuscated. Over-
all, we find a total of 2,842 obfuscated scripts.

3.4 RQ2. Prevalence of Obfuscation Tools
Given the non-negligible number of obfuscated scripts, we next
address the question which tools and techniques developers use for
obfuscation. Table 4 shows for each tool X how many scripts are
detected as obfuscated by this tool according to the corresponding
TOOL-X classifier. The by far most popular obfuscator in the web
is DaftLogic Obfuscator, with 2,551 scripts in total. As the only tool
that encodes the entire code using the eval function, it clearly stands
out among the other tools. The study data does not contain any
scripts obfuscated with jfogs. A surprising fact from these results
is that the apparent popularity on npm of tools like javascript-
obfuscator and JSObfu does not transfer to client-side obfuscated
code. One reason may be that these obfuscators are more popular
for JavaScript code running on Node.js than for client-side code.

Finding 2. DaftLogic Obfuscator is the by far most popular
obfuscation tool. The most popular obfuscation technique is
to load code at runtime via eval.

4http://software-lab.org/projects/obfuscation_study.html

http://software-lab.org/projects/obfuscation_study.html

Minified and Obfuscated Code in the Web WWW ’19, May 13–17, 2019, San Francisco, CA, USA

Table 5: Overlap between different classifiers.

Pair of classifiers Number of scripts

TOOL-jsobfcom ∩ OBFUS 147 (98% of TOOL-jsobfcom)
TOOL-daft-logic ∩ OBFUS 2,474 (97% of TOOL-daft-logic)
TOOL-jsobf ∩ OBFUS 71 (100% of TOOL-jsobf)

Figure 3: Prevalence of obfuscated code within categories of
websites. In parenthesis on the x-axis we show the number
of scripts in each category.

Having a set of classifiers related to obfuscation (OBFUS and several
TOOL-X classifiers) raises the question to what extent the scripts
detected by these classifiers overlap. Table 5 shows the overlap
of scripts identified by the different obfuscation-related classifiers.
We can make three observations. First, the TOOL-X classifiers do
not overlap with each other, i.e., each of them precisely identifies
scripts originating from a specific tool. This result is particularly
remarkable for javascriptobfuscator.com and javascript-obfuscator,
as these tools share a list of common obfuscation techniques. Sec-
ond, almost all scripts detected as obfuscated by a specific tool are
also detected as obfuscated by the general OBFUS classifier. Third,
some scripts are classified as obfuscated but none of our TOOL-X
classifiers can identify the tool used for obfuscating them.

Finding 3. Our generic obfuscation detection classifier suc-
cessfully identifies most of the obfuscated scripts found by
the individual tool classifiers and several additional scripts.

3.5 RQ3. Transformations vs. Kinds of Scripts
3.5.1 Categories of Scripts. We associate scripts with website cate-
gories, such as “News”, “Travel”, and “Education”. To this end, we
use the Juniper Test-a-Site5 service, which yields a category for
a given URL. We associate a category with a script based on the
top-level domain from which the script was loaded.

Obfuscated code. We first analyze the prevalence of obfuscated code
loaded by websites in specific categories. Figure 3 shows for ten of
the categories the percentage of obfuscated scripts among all scripts
loaded by a site and an additional entry with the average across
all other categories. The results show that the prevalence of obfus-
cation differs significantly across website categories. Categories
with a particularly high percentage of obfuscated scripts include
5http://mtas.surfcontrol.com/mtas/JuniperTest-a-Site.asp

Figure 4: Prevalence of transformed code within categories
of websites. In parenthesis on the x-axis we show the num-
ber of scripts in each category.

“Adult/Sexually Explicit” and “Glamour & Intimate Apparel”, i.e.,
sites with content that careful users may trust less than an average
website.

Transformed code. Figure 4 shows the ratio between transformed
and regular code within all script categories in the study data.
The percentage of transformed code ranges between 28% and 73%.
The most significant categories are “Search engines” with 71.7%
transformed code and “Advertisements” with 73.7%.We hypothesize
that this is the case because websites in these categories serve
scripts to many other domains, e.g. tracking scripts, and the size of
the delivered scripts has a direct impact in the cost of using these
services.

Finding 4. Code obfuscation is particularly common in cer-
tain website categories, e.g., adult content. Other code trans-
formations occur particularly often in scripts delivered to
many other websites.

3.5.2 Third-party Scripts. The following studies whether transfor-
mations are particularly common for scripts loaded from third-party
sites. As first-party scripts, we consider all inline scripts and all
scripts loaded from the top-level domain of the visited website itself.
All remaining scripts are considered third-party scripts. 6 Based on
this grouping of scripts, we analyze how the results of the TRANS
and OBFUS classifiers relate to where a script is loaded from.
We find that third-party scripts, with a percentage of 55.38%, are
almost twice as frequently transformed than scripts loaded directly
from the visited website, which have a percentage of only 30.18%
transformed code. These findings seem natural because providers
of third-party scripts, e.g., content-delivery networks, often provide
a minified version to reduce loading time. For scripts labeled as
obfuscated, we do not find a significant difference between third-
party and first-party scripts.

Finding 5. Third-party scripts are almost twice as frequently
transformed than first-party scripts (55.38% versus 30.18%).
Obfuscation is equally uncommon within both categories.

6This classification may be wrong for websites that split their files across multiple
top-level domains. Finding more accurate ways to identify third-party scripts is left
for future work.

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Philippe Skolka, Cristian-Alexandru Staicu, and Michael Pradel

3.6 RQ4. Runtime Behavior of Obfuscated Code
To better understand what the obfuscated scripts actually do, we
run them in a custom environment and observe what APIs they
try to access. The custom environment consists of self-replicating
proxy objects that emulate the browser APIs and other well-known
frameworks required by the analyzed scripts. For example, we cre-
ate a globally accessible document proxy object that returns another
proxy each time one of its properties is accessed. This environ-
ment provides a simple and effective technique for inspecting the
behavior of obfuscated scripts.
In total, we analyze 2,924 unique obfuscated scripts which include
all scripts classified as obfuscated by either OBFUS or one of the
TOOL-X classifiers. We use 13 self-replicating proxies to mock the
browser API and we run our analysis in Node.js. After each run,
we collect a trace summarizing the property writes, property reads,
and function calls observed via the proxies. In total, we collect 3.6
million property accesses, 10,400 writes and 1.4 million function
calls. 2,231 scripts access at least one property via the proxies and
1,263 scripts set globally accessible properties. These numbers show
that our setup is effective at running the obfuscated scripts and at
extracting meaningful information about the APIs they call and the
properties they access.
Out of the 2,924 scripts, 341 access the cookie object, 316 the
userAgent, 287 the location and 101 the referrer. These are all
privacy-sensitive APIs that may be accessed to perform cookie theft,
cookie syncing, referrer sniffing, or browser fingerprinting. How-
ever, a more detailed analysis is needed to confirm this hypothesis.
Themost frequently invokedmethod is by far document.createElement,
used by 346 scripts. This means that in order to fully understand a
given obfuscated script, an analysis needs to reason about theHTML
code injected in the page, which seem to be a popular idiom. More-
over, we observe that 295 scripts call document.createElement(’script’),
i.e., inject code at runtime, a technique commonly used by malware.
We manually inspect some of the traces and find two security-
relevant behavioral patterns. First, several traces contain various
API calls known to be used for browser fingerprinting, such as
location.href, screen.width, screen.colorDepth, navigator.plugins
or window.devicePixelRatio. There is even a trace in which after
multiple such property accesses, a call to document.createElement(’img’)
is made, which suggests that the obfuscated script is sending this
information over the network. The second interesting case is of a
trace containing 336,000 invocations to performance.now, which is
likely to be part of a timing attack.
An additional observation we make after our sampling-based man-
ual analysis is that some scripts set global properties, such as
SHA256_init, jQueryPath, mtTracking or Fingerprint2. Their names
suggest that some of the scripts register benign functionality, such
as SHA hash functions or jQuery, while others register tracking
and fingerprinting functionality.

Finding 6. Multiple obfuscated scripts access privacy-
sensitive APIs and use dynamic code loading.

3.7 RQ5. Performance of Transformed Code
Code transformations may not only influence the understandability
of code but also its efficiency. To better understand the cost-benefit

Table 6: Libraries used to measure performance and correct-
ness.

Library Category Number of tests

Bacon Reactive programming 7,492
async Asynchronous programming 513
immutable Immutable data structures 557
lodash General utility 6,685
math Math utility 4,063
moment Date utility 3,232
ramda Functional programming 954
underscore General utility 1,569
voca String utility 409
when Promise implementation 872

tradeoff of transformations, we study to what extent transforma-
tions affect the performance of code.

3.7.1 Benchmarks. Addressing RQ5 and RQ6 requires JavaScript
code for which we can measure both the performance and the
correctness. For this purpose, we gather a set of popular client-
side JavaScript libraries that have extensive test suites. These tests
include assertions to check the correctness of execution behavior,
and they provide a reliable way to measure the execution time of
code. Table 6 presents the ten libraries we consider, along with the
number of tests they provide. All libraries are frequently used in
client-side web applications. We execute their unit tests on Node.js,
though, because it facilitates the performance measurements, as
they are not influenced by opening and initializing a browser.
To study how transformations affect the performance and correct-
ness of the libraries, we apply all 46 transformations (Section 2.2.2)
to each library. To measure the performance of a given, possibly
transformed, library, we execute its test suite 20 times and measure
the overall wall-clock time of each execution. We do not perform
a separate warm-up phase before measuring performance, as is
common for longer-running benchmarks, to include the time for
parsing code into our measurements, as this time affects the user
experience on websites. Since closure injects code that is not com-
patible with our environment and prevents us from running the
library tests, we omit this transformation tool for RQ5 and RQ6.
We run all our performance and correctness measurements on an
AMD Phenom II X6 1100T CPU with 16GB of RAM.

3.7.2 Results. Figure 5 shows the execution time of transformed
code relatively to regular code for eleven different transformation
tools. The figure presents results from the ten libraries listed in
Section 3.7.1. Each data point shows the average execution time
across 20 repetitions and the 95% confidence interval. The first
six columns of data points are for minification tools, whereas the
following four columns are for obfuscation tools. The last column
shows the baseline, i.e. the performance of the original code.
For minification, the figure shows an overall improvement of effi-
ciency. In particular, for two libraries, voca and math, minification
causes performance improvements of over 20% and 8%, respectively.
For most of the other libraries, minification causes a measurable
but small performance improvement.
In contrast to minification, we observe an overall performance
degradation after obfuscating code. For at least four libraries (ramda,
moment, math, and Bacon), obfuscation significantly increases the

Minified and Obfuscated Code in the Web WWW ’19, May 13–17, 2019, San Francisco, CA, USA

Figure 5: Execution time of transformed code relative to reg-
ular code. Each data point shows the average across 20 rep-
etitions and the 95% confidence interval (which is too small
to be visible for most libraries).

execution time, with average increases between 16% to 37%. For
eight out of the ten libraries, the obfuscated code is measurably
slower than the regular code. The only outlier is voca, which exe-
cutes faster for two of the applied obfuscation tools.

Finding 7.Minification either improves performance or has
no noticeable effect. In contrast, obfuscation can cause sig-
nificant performance degradations.

3.8 RQ6. Correctness of Transformed Code
Besides affecting the performance of code, there is another potential
cost of applying code transformations: the impact of transforma-
tions on the correctness of the code. To assess this impact, we
run the test suites of the benchmarks from Section 3.7.1 before
and after applying different transformations and measure the per-
centage of tests that still succeed after the transformation. We say
that transformed code is correct if this percentage is 100%, i.e., the
transformed code passes all tests.
Figure 6 shows the percentage of correct code among all code trans-
formed with a specific tool. Overall, only about 70% of the minified
code is correct, and even worse, less than 50% of the obfuscated
code is correct. The original code, shown in the right-most column,
is by definition 100% correct. A manual analysis of transformed
code that fails test cases shows two root causes. First, some trans-
formation tools have implementation-level bugs that get triggered
by some code. For example, JSObfu, which consistently creates in-
correct code extensively uses the String.fromCharCode() method
to encode constant string occurring in the code. However, in some
cases the method is applied on an undefined object instead of a
string, which causes an exception. Second, some transformation
tools change the semantics of code in ways that affect rather subtle
corner-cases of the JavaScript language. For example, some config-
urations of UglifyJS replace non-global function names with short
and meaningless names. If such a function is a constructor func-
tion, this transformation affects code that creates an object with

Figure 6: Percentage of correct code among all code trans-
formed by a specific tool.

this function and then checks the name of the constructor using
JavaScript’s reflection APIs. Some of the tests trigger this corner
case, e.g., a test of the “immutable” benchmark checks whether
objects of type Record have a constructor with the same name.

Finding 8. A large portion of code transformed both by
minification and obfuscation does not fully preserve the cor-
rectness of the code.

We conclude from these results that transformation tools may not
only impose a performance cost, but even worse, risk to change the
semantics of code. A practical take-away from this finding is that
users of such tools must carefully check the correctness of trans-
formed code, instead of blindly relying on the transformation tool.
Our results also motivates future work on validating and improving
minification and obfuscation tools, e.g., through automated testing.

4 RELATEDWORK
This work relates to two active research fields: (i) detection of
obfuscated and malicious code and (ii) empirical studies of the web.

4.1 Obfuscated and Malicious Code Detection
Tellenbach et al. [33] propose multiple classifiers for detecting ob-
fuscation. However, they manually specify features of code files,
such as the Shannon entropy or the number of characters per line.
Similar, Likarish et al. [15] manually extract 60 features from code
and propose four different classifiers. In contrast to both, our AST-
based classifier does not require any feature engineering.
Wang et al. [36] present a neural network-based classifier for de-
tecting malicious JavaScript code. Since attackers often hide the
malicious intent of their scripts using obfuscation, a significant
proportion of the dataset used for training their classifier consists
of obfuscated code. Comparable to our approach, instead of defin-
ing explicit features, they learn the features automatically from
the code with the help of multiple layers of stacked denoising au-
toencoders in the neural network. They transform the code files by
replacing each character with a unique binary vector. The vectors
require 20,000 dimensions to represent all characters of the dataset.
Therefore, Wang et al. reduce the dimensionality to 480 using a

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Philippe Skolka, Cristian-Alexandru Staicu, and Michael Pradel

dimensionality reduction algorithm. In contrast, we learn a vector
representation for AST nodes which only requires 45 dimensions.
Al-Taharwa et al. [1] present a Bayesian-based obfuscation detector
aimed at manually performed obfuscation. In contrast, we consider
automatically transformed code. Kaplan et al. [10] and Curtsinger
et al. [7] extract features from AST nodes while preserving the
context of nodes. Their classifiers specialize on obfuscated and on
malicious code, respectively. The context-based feature extraction
mechanism is comparable to the concept we follow by processing
entire ASTs of code files to preserve the context of all AST nodes.
However, all three approaches limit the number of allowed contexts
and reduce the number of features by applying feature selection.
In our case, we do not discard any information from the ASTs so
that the neural network can extract the most descriptive features.
There are further static classifier-based approaches which are less
related to our approach. Jodavi et al. [9] address the detection of
obfuscation with an ensemble of multiple one-class SVM classifiers
which are trained to recognize non-obfuscated code using a set of
structural and lexical features, such as the number of dynamic code
evaluations and the maximum entropy of strings.
Certain researchers address the problem of detecting obfuscated
code by using techniques other thanmachine learning. Xu et al. [38]
propose an approach to detect malicious obfuscated code using both
static and dynamic analysis. They mostly focus on obfuscation tech-
niques which require the usage of the eval function, the unescape

function, or other related functions. Using static analysis, they
gather information about function definitions and invocations in
the code. At runtime, they examine if new function definitions and
invocations are present to reveal the potentially malicious part of
the code. By comparison, we detect if code is obfuscated without as-
suming a malicious intent because obfuscation allows for different
goals, e.g. the protection of intellectual property of code. Further-
more, we include all techniques offered by the obfuscation tools we
use for this study instead of focusing only on eval based obfusca-
tion. As discovered in Section 2.2.2, most JavaScript obfuscators do
not implement eval based techniques.
Ceccato et al. [5] propose using out of the box obfuscators for hinder-
ing portability of attacks. We also use readily available obfuscators,
but for generating training data, not for software diversification.
Deobfuscation is the process of reverse engineering obfuscated code.
Techniques for purpose include learning-based approaches [3, 25]
and semantics-preserving rewriting of the obfuscated code [16, 39].
This work is complementary to our work and can be applied after
detection obfuscated code.

4.2 Empirical Studies
There are a few obfuscation related studies in other programming
language contexts. Ceccato et al. [4] analyze the impact of different
obfuscation patterns on Java code in terms of the difference between
the obfuscated and the original code with the help of metrics. Wang
et al. [35] examine the characteristics of obfuscated iOS Apps, the
popularity of different obfuscation patterns, and the difficulty of
reverse engineering the obfuscated apps. Hammad et al. [8] perform
a study concerning the effect of obfuscated Android apps on anti-
malware products. They find that the performance of most anti-
malware products is significantly impacted by obfuscated apps.

Moreover, they report that the tools used for obfuscating the apps
frequently result in corrupt apps. Depending on the tool, only 0%
to 62% of all 250 apps are runnable after the obfuscation is applied.
We observe a similar outcome in the case of JavaScript obfuscation.
Visaggio et al. [34] compare obfuscated and regular JavaScript code
using several metrics, including n-gram, entropy, and word size.
They find that the two kinds of code differ from each other, in
particular, when combining multiple metrics. XU et al. [37] study
510 samples of malicious JavaScript code, its use of obfuscation,
and how obfuscation influences whether an anti-virus checker
detects the code as malicious. In contrast, our study considers many
more scripts, goes beyond obfuscated code, and addresses different
research questions.
There have been various JavaScript and web security related stud-
ies recently, including a study on the prevalence of the eval func-
tion [27], on trust relationships between websites that include re-
mote libraries and their corresponding library providers [21], on
the communication between websites and embedded frames with
3rd-party content [30], on outdated libraries in the web [13], on XSS
vulnerabilities [17], on ReDoS vulnerabilities in JavaScript-based
web servers [31], and on performance issues in JavaScript [29].
However, there has been no study focusing on obfuscation and
minification in the web outside of malicious code. We conduct the
first comprehensive study examining the prevalence, the perfor-
mance, and the validity of obfuscated and minified JavaScript code
in the web.

4.3 JavaScript Analysis
Our work relates to program analyses for JavaScript [2], e.g., to de-
tect conflicts between libraries [22], type inconsistencies [23], code
injection attacks [32], or data races [20]. In contrast to that work,
we here address an analysis task by training a machine learning
instead of implementing an analysis by hand.

5 CONCLUSION
This paper presents the first large-scale study of minified and obfus-
cated JavaScript in client-side website applications. Our study leads
to several findings that should be of interest for both the web com-
munity and the security community. In particular, we show that
transformed code is surprisingly common, whereas obfuscation
aimed at hindering understanding remains an exception. Yet, there
is a non-negligible number of obfuscated scripts, which typically
occur in specific website categories and which sometimes expose
security-relevant behavior, e.g., fingerprinting or timing attacks.
Moreover, we show that obfuscation not only provides benefits to
its users but also imposes a cost by negatively impacting both the
performance and the correctness of the code. Besides these findings
we are releasing the obfuscated code detected during the study to
stimulate future research in this area.

Acknowledgments
This work was supported by the German Federal Ministry of Education
and Research and by the Hessian Ministry of Science and the Arts within
CRISP, by the German Research Foundation within the ConcSys and Perf4JS
projects, and by the Hessian LOEWE initiative within the Software-Factory
4.0 project.

Minified and Obfuscated Code in the Web WWW ’19, May 13–17, 2019, San Francisco, CA, USA

REFERENCES

[1] Ismail Adel AL-Taharwa, Hahn-Ming Lee, Albert B. Jeng, Kuo-Ping Wu, Cheng-
Seen Ho, and Shyi-Ming Chen. 2015. JSOD: JavaScript Obfuscation Detector. Sec.
and Commun. Netw. 8, 6 (April 2015), 1092–1107. https://doi.org/10.1002/sec.1064

[2] Esben Andreasen, Liang Gong, Anders Møller, Michael Pradel, Marija Selakovic,
Koushik Sen, and Cristian-Alexandru Staicu. 2017. A Survey of Dynamic Analysis
and Test Generation for JavaScript. Comput. Surveys (2017).

[3] Rohan Bavishi, Michael Pradel, and Koushik Sen. 2018. Context2Name: A Deep
Learning-Based Approach to Infer Natural Variable Names from Usage Contexts.
CoRR arXiv:1809.05193 (2018).

[4] Mariano Ceccato, Andrea Capiluppi, Paolo Falcarin, and Cornelia Boldyreff.
2015. A large study on the effect of code obfuscation on the quality of Java
code. Empirical Software Engineering 20, 6 (01 Dec 2015), 1486–1524. https:
//doi.org/10.1007/s10664-014-9321-0

[5] Mariano Ceccato, Paolo Falcarin, Alessandro Cabutto, Yosief Weldezghi Frezghi,
and Cristian-Alexandru Staicu. 2016. Search Based Clustering for Protecting
Software with Diversified Updates. In Search Based Software Engineering - 8th
International Symposium, SSBSE 2016, Raleigh, NC, USA, October 8-10, 2016, Pro-
ceedings. 159–175. https://doi.org/10.1007/978-3-319-47106-8_11

[6] Marco Cova, Christopher Krügel, and Giovanni Vigna. 2010. Detection and anal-
ysis of drive-by-download attacks and malicious JavaScript code. International
Conference on World Wide Web (WWW).

[7] Charlie Curtsinger, Benjamin Livshits, Benjamin Zorn, and Christian Seifert. 2011.
ZOZZLE: Fast and Precise In-browser JavaScript Malware Detection. In Proceed-
ings of the 20th USENIX Conference on Security (SEC’11). USENIX Association,
Berkeley, CA, USA, 3–3. http://dl.acm.org/citation.cfm?id=2028067.2028070

[8] MahmoudHammad, JoshuaGarcia, and SamMalek. 2017. A Large-Scale Empirical
Study on the Effects of Code Obfuscations on Android Apps and Anti-Malware
Products. Proceedings of the 2018 IEEE 26th International Conference on Program
Comprehension - ICSE 2018.

[9] Mehran Jodavi, Mahdi Abadi, and Elham Parhizkar. 2015. JSObfusDetector: A
binary PSO-based one-class classifier ensemble to detect obfuscated JavaScript
code. Proceedings of the International Symposium on Artificial Intelligence and
Signal Processing, AISP 2015 (2015), 322–327. https://doi.org/10.1109/AISP.2015.
7123508

[10] Scott Kaplan, Ben Livshits, Ben Zorn, Christian Siefert, and Charlie Cursinger.
2011. "NOFUS: Automatically Detecting" + String.fromCharCode(32) + "ObFuS-
CateD ".toLowerCase() + "JavaScript Code". Technical Report.

[11] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel, Gio-
vanni Vigna, and Vern Paxson. 2014. Hulk: Eliciting Malicious Behavior in
Browser Extensions. Proceedings of the 23rd USENIX Conference on Security.

[12] Rezwana Karim, Mohan Dhawan, Vinod Ganapathy, and Chung-chieh Shan.
2012. An Analysis of the Mozilla Jetpack Extension Framework. ECOOP 2012 -
Object-Oriented Programming - 26th European Conferenc.

[13] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the
Use of Outdated JavaScript Libraries on the Web. In Network and Distributed
System Security Symposium (NDSS). The Internet Society.

[14] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later:
large-scale detection of DOM-based XSS. ACM SIGSAC Conference on Computer
and Communications Security (CCS).

[15] Peter Likarish, Eunjin Jung, and Insoon Jo. 2009. Obfuscated malicious JavaScript
detection using classification techniques. In 2009 4th International Conference on
Malicious and Unwanted Software, MALWARE 2009. 47 – 54.

[16] Gen Lu and Saumya K. Debray. 2012. Automatic Simplification of Obfuscated
JavaScript Code: A Semantics-Based Approach. International Conference on
Software Security and Reliability (SERE).

[17] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin Jia.
2018. Riding out DOMsday: Towards Detecting and Preventing DOM Cross-Site
Scripting. Network and Distributed System Security Symposium (NDSS).

[18] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neu-
ral Networks over Tree Structures for Programming Language Processing. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI’16).
AAAI Press, 1287–1293. http://dl.acm.org/citation.cfm?id=3015812.3016002

[19] Keaton Mowery and Hovav Shacham. 2012. Pixel perfect: Fingerprinting canvas
in HTML5. Web 2.0 Security & Privacy, (W2SP).

[20] Erdal Mutlu, Serdar Tasiran, and Benjamin Livshits. 2015. Detecting JavaScript
Races that Matter. In European Software Engineering Conference and International
Symposium on Foundations of Software Engineering (ESEC/FSE).

[21] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.
You Are What You Include: Large-scale Evaluation of Remote Javascript Inclu-
sions. In ACM SIGSAC Conference on Computer and Communications Security
(CCS). ACM.

[22] Jibesh Patra, Pooja N. Dixit, and Michael Pradel. 2018. ConflictJS: Finding and
Understanding Conflicts Between JavaScript Libraries. In ICSE. 741–751.

[23] Michael Pradel, Parker Schuh, and Koushik Sen. 2015. TypeDevil: Dynamic Type
Inconsistency Analysis for JavaScript. In International Conference on Software
Engineering (ICSE).

[24] Veselin Raychev, Pavol Bielik, Martin T. Vechev, and Andreas Krause. 2016. Learn-
ing programs from noisy data. InACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, (POPL). ACM.

[25] Veselin Raychev, Martin T. Vechev, and Andreas Krause. 2015. Predicting Program
Properties from "Big Code".. In Principles of Programming Languages (POPL). 111–
124.

[26] Andreas Reiter and Alexander Marsalek. 2017. WebRTC: your privacy is at risk.
Proceedings of the Symposium on Applied Computing, SAC 2017.

[27] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. 2011. The Eval
That Men Do. In ECOOP 2011 – Object-Oriented Programming, Mira Mezini (Ed.).
Springer Berlin Heidelberg.

[28] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song. 2010. FLAX:
Systematic Discovery of Client-side Validation Vulnerabilities in Rich Web Ap-
plications. Network and Distributed System Security Symposium (NDSS).

[29] Marija Selakovic and Michael Pradel. 2016. Performance Issues and Optimiza-
tions in JavaScript: An Empirical Study. In International Conference on Software
Engineering (ICSE). 61–72.

[30] Sooel Son and Vitaly Shmatikov. 2013. The Postman Always Rings Twice: Attack-
ing and Defending postMessage in HTML5 Websites. In Network and Distributed
System Security Symposium (NDSS). The Internet Society.

[31] Cristian-Alexandru Staicu and Michael Pradel. 2018. Freezing the Web: A Study
of ReDoS Vulnerabilities in JavaScript-based Web Servers. In USENIX Security
Symposium. 361–376.

[32] Cristian-Alexandru Staicu, Michael Pradel, and Ben Livshits. 2018. Understanding
and Automatically Preventing Injection Attacks on Node.js. In Network and
Distributed System Security Symposium (NDSS).

[33] Bernhard Tellenbach, Sergio Paganoni, and Marc Rennhard. 2016. Detecting Ob-
fuscated JavaScripts using Machine Learning . International Journal on Advances
in Security 9, 3 & 4 (2016), 196–206.

[34] Corrado Aaron Visaggio, Giuseppe Antonio Pagin, and Gerardo Canfora. 2013. An
empirical study of metric-based methods to detect obfuscated code. International
Journal of Security and its Applications 7, 2 (2013), 59–74.

[35] Pei Wang, Qinkun Bao, Li Wang, Shuai Wang, Zhaofeng Chen, and Tao Wei.
2018. Software Protection on the Go: A Large-Scale Empirical Study on Mobile
App Obfuscation. In Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018. ACM, New York, NY, USA, 11.

[36] Yao Wang, Wan-dong Cai, and Peng-cheng Wei. 2016. A deep learning approach
for detecting malicious JavaScript code. 9 (02 2016).

[37] Wei Xu, Fangfang Zhang, and Sencun Zhu. 2012. The power of obfuscation tech-
niques in malicious JavaScript code: A measurement study. In 7th International
Conference on Malicious and Unwanted Software, MALWARE 2012, Fajardo, PR,
USA, October 16-18, 2012. 9–16.

[38] W Xu, F Zhang, and S Zhu. 2013. JStill: Mostly static detection of obfuscated
malicious javascript code . Proceedings of the 3rd ACM Conference on Data and
Application Security and Privacy (CODASPY) (2013), 117–128. http://www.cse.
psu.edu/{~}szhu/papers/JStill.pdf

[39] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-Padilla, and Matthew Smith.
2016. Helping Johnny to Analyze Malware: A Usability-Optimized Decompiler
and Malware Analysis User Study. IEEE Symposium on Security and Privacy (SP).

https://doi.org/10.1002/sec.1064
https://doi.org/10.1007/s10664-014-9321-0
https://doi.org/10.1007/s10664-014-9321-0
https://doi.org/10.1007/978-3-319-47106-8_11
http://dl.acm.org/citation.cfm?id=2028067.2028070
https://doi.org/10.1109/AISP.2015.7123508
https://doi.org/10.1109/AISP.2015.7123508
http://dl.acm.org/citation.cfm?id=3015812.3016002
http://www.cse.psu.edu/ { ~ } szhu/papers/JStill.pdf
http://www.cse.psu.edu/ { ~ } szhu/papers/JStill.pdf

	Abstract
	1 Introduction
	2 Classification of Scripts
	2.1 Classification Tasks
	2.2 Training Data for Learning Classifiers
	2.3 Classification via Identifier Frequencies
	2.4 Classification via AST Convolution
	2.5 Accuracy of Classifiers

	3 Studying Deployed Client-Side Code
	3.1 Study Data: Deployed, Client-Side JavaScript Code
	3.2 Accuracy of Classifiers on Study Data
	3.3 RQ1. Prevalence of Transformed Code
	3.4 RQ2. Prevalence of Obfuscation Tools
	3.5 RQ3. Transformations vs. Kinds of Scripts
	3.6 RQ4. Runtime Behavior of Obfuscated Code
	3.7 RQ5. Performance of Transformed Code
	3.8 RQ6. Correctness of Transformed Code

	4 Related Work
	4.1 Obfuscated and Malicious Code Detection
	4.2 Empirical Studies
	4.3 JavaScript Analysis

	5 Conclusion
	References

