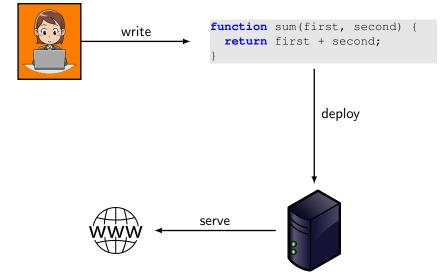
Anything to Hide? Studying Minified and Obfuscated Code in the Web

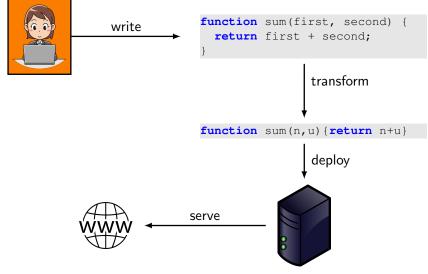
Philippe Skolka

Cristian-Alexandru Staicu Michael Pradel

TU Darmstadt


www.software-lab.org

15th of May 2019



Code Distribution on the Web

Code Distribution on the Web

Common Transformations: Minification and Obfuscation

Hand-written

```
function hi(name) {
   console.log("Hi" + " " + name);
}
hi();
```

Objective: \uparrow maintainability

Common Transformations: Minification and Obfuscation

Hand-written

```
function hi(name) {
   console.log("Hi" + " " + name);
}
hi();
```

Objective: \uparrow maintainability

Minified

```
function hi(i) {console.log("Hi "+i) }hi();
```

Objective: \downarrow code size

Common Transformations: Minification and Obfuscation

Hand-written

```
function hi(name) {
  console.log("Hi" + " " + name);
}
hi();
```

Objective: \uparrow maintainability

Minified

```
function hi(i) {console.log("Hi "+i) }hi();
```

Objective: \downarrow code size

Obfuscated

```
var a=['\x6c\x6f\x67'];var b=function(c,d){
c=c-0x0;var e=a[c];return e;};function
c(d){console[b('0x0')]('\x48\x69'+'\x20'+d);}c();
```

Objective: \downarrow understandability $_{2/22}$

RQ2: Which tools are used for obfuscation on the web?

- **RQ1:** How prevalent is transformed code on the web?
- RQ2: Which tools are used for obfuscation on the web?
- RQ3: Does prevalence differ among website categories?

RQ2: Which tools are used for obfuscation on the web?

RQ3: Does prevalence differ among website categories?

RQ4: What behavior is hidden using obfuscation?

RQ2: Which tools are used for obfuscation on the web?

RQ3: Does prevalence differ among website categories?

RQ4: What behavior is hidden using obfuscation?

RQ5: How do transformations impact performance?

RQ2: Which tools are used for obfuscation on the web?

RQ3: Does prevalence differ among website categories?

RQ4: What behavior is hidden using obfuscation?

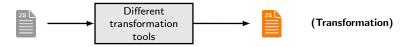
RQ5: How do transformations impact performance?

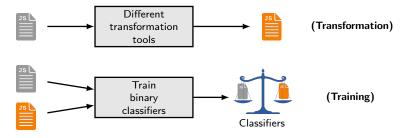
RQ6: How do transformations impact correctness?

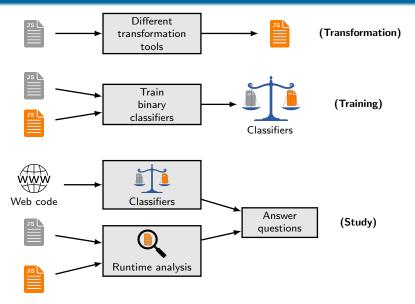
Research Questions

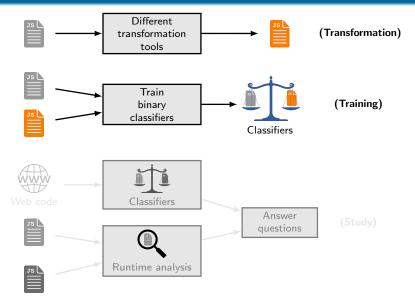
RQ6: Hov

RQ1: How prevalent is transformed code on the web? RQ4: Wha How are the transformations used? ine weh? .ong website categories? RQ5: How do transformations impact What is their cost?


• Large scale study, expensive to do manual




- Large scale study, expensive to do manual
- Heuristics hard to get right



- Large scale study, expensive to do manual
- Heuristics hard to get right
- Training data easy to acquire

Transformation Tools

Minifiers	Obfuscators
UglifyJS babel-minify Google Closure Compiler javascript-minifier.com Matthias Mullie Minify YUI Compressor	javascript-obfuscator javascriptobfuscator.com DaftLogic Obfuscator jfogs JSObfu

- <u>11 tools</u> with a total of 46 different configuration
- transform files from the "150k Javascript Dataset"¹

¹Raychev, V., Bielik, P., Vechev, M. and Krause, A., *Learning Programs from Noisy Data*, POPL '16

Seven binary classifiers:

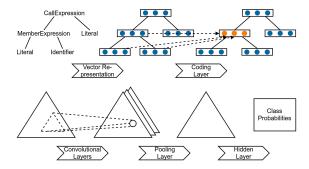
Seven binary classifiers:

• TRANSFORMATION classifier Is the code transformed?

Seven binary classifiers:

- TRANSFORMATION classifier Is the code transformed?
- OBFUSCATION classifier Is the code obfuscated?

Seven binary classifiers:


- TRANSFORMATION classifier Is the code transformed?
- OBFUSCATION classifier Is the code obfuscated?
- TOOL-X classifier * 5

Is the code produced by a given obfuscation tool?

Binary Classifiers

Convolutional neural network


• reuse existing architecture [Mou et al., AAAI, 2016]

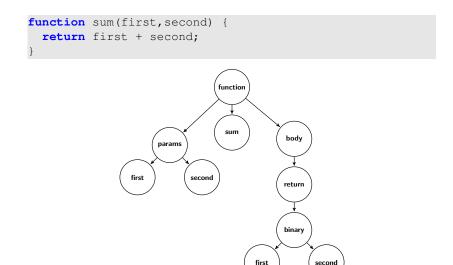
Binary Classifiers

Convolutional neural network

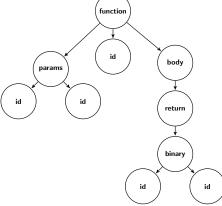
• reuse existing architecture [Mou et al., AAAI, 2016]

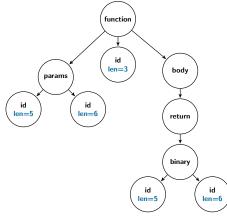


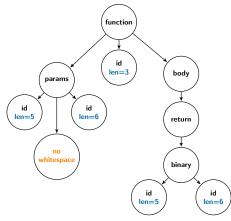
 input to the network: simplified abstract syntax tree (AST) representation of code


Binary Classifiers

Convolutional neural network


• reuse existing architecture [Mou et al., AAAI, 2016]


- input to the network: simplified abstract syntax tree (AST) representation of code
- 30 feature vector size, 50 epochs, batch size 1


```
function sum(first, second) {
  return first + second;
}
```



```
function sum(first, second) {
   return first + second;
}
```



```
function sum(first, second) {
   return first + second;
}
```

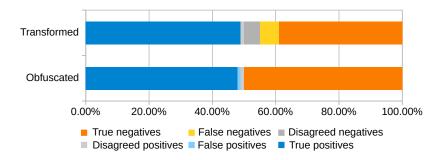

Accuracy of the Classifiers

validation set =

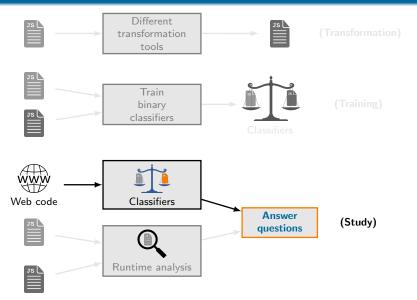
2,500 files from the corpus and their transformed versions

Classifier	Accuracy
TRANSFORMATION (no spaces info)	85.58%
TRANSFORMATION	95.06%
OBFUSCATION (no spaces info, no identifiers length)	75.43%
OBFUSCATION (no spaces info)	99.83%
OBFUSCATION	99.95%
TOOL-JSObfu	100%
TOOL-jsobfcom	100%
TOOL-jfogs	99.56%
TOOL-daft-logic	100%
TOOL-jsobf	100%

Accuracy of the Classifiers: User Study


- five users and 200 scripts from the web:
 - 50 positive and 50 negative classified by TRANSFORMATION
 - 50 positive and 50 negative classified by OBFUSCATION

Accuracy of the Classifiers: User Study


- five users and 200 scripts from the web:
 - 50 positive and 50 negative classified by TRANSFORMATION
 - 50 positive and 50 negative classified by OBFUSCATION
- 0.81 inter-rater pairwise agreement

Accuracy of the Classifiers: User Study

- five users and 200 scripts from the web:
 - 50 positive and 50 negative classified by TRANSFORMATION
 - 50 positive and 50 negative classified by OBFUSCATION
- 0.81 inter-rater pairwise agreement

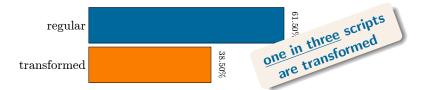
Methodology

• top 100,000 most popular websites

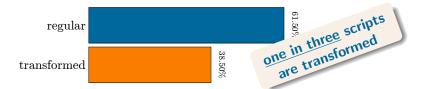
- top 100,000 most popular websites
- both inlined and included scripts

- top 100,000 most popular websites
- both inlined and included scripts
- more than 400,000 unique scripts

- top 100,000 most popular websites
- both inlined and included scripts
- more than 400,000 unique scripts
- each script mapped to a category, e.g., "news"

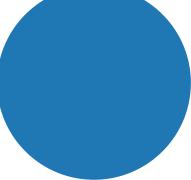

web scripts judged by TRANSFORMATION classifier

web scripts judged by TRANSFORMATION classifier


web scripts judged by TRANSFORMATION classifier

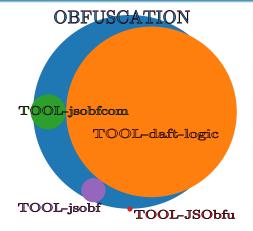
web scripts judged by **OBFUSCATION** classifier

web scripts judged by TRANSFORMATION classifier

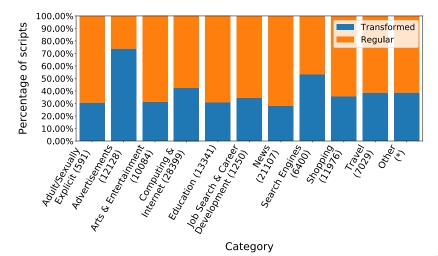


web scripts judged by $\ensuremath{\mathsf{OBFUSCATION}}$ classifier

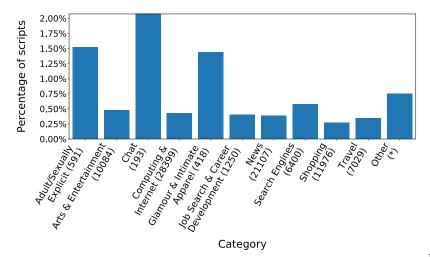
RQ2: Which tools are used for obfuscation on the web?



RQ2: Which tools are used for obfuscation on the web?


TOOL-daft-logic

RQ2: Which tools are used for obfuscation on the web?



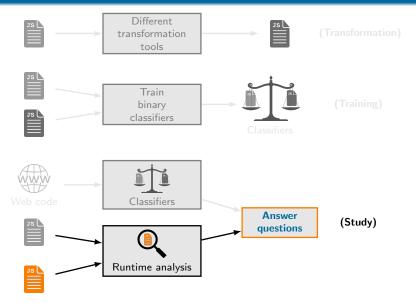
2,842 unique obfuscated scripts

Transformed scripts in different categories

Obfuscated scripts in different categories

• perform lightweight dynamic analysis in Node.js

- perform lightweight **dynamic analysis** in Node.js
- collect and analyze traces with accessed properties


- perform lightweight dynamic analysis in Node.js
- collect and analyze traces with accessed properties
- multiple scripts access privacy sensitive APIs:
 - 11% read the <code>cookie</code>
 - 10% access the userAgent
 - 3% read the referrer
 - 10% inject additional JavaScript code

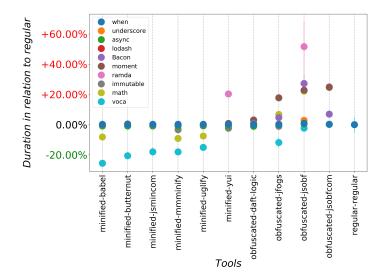
- perform lightweight dynamic analysis in Node.js
- collect and analyze traces with accessed properties
- multiple scripts access privacy sensitive APIs:
 - 11% read the <code>cookie</code>
 - 10% access the userAgent
 - 3% read the referrer
 - 10% inject additional JavaScript code
- several scripts seem to perform browser fingerprinting

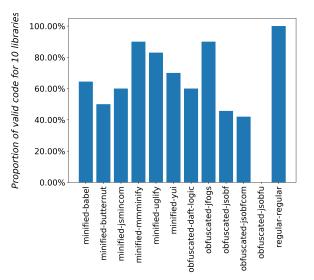
Methodology

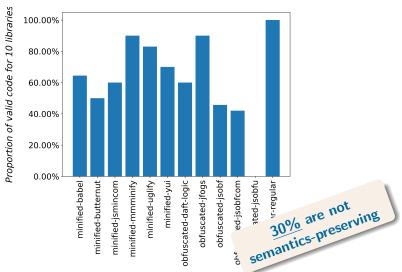
• 10 libraries with more than 400 tests each

- 10 libraries with more than 400 tests each
- 46 transformed versions of the libraries

- 10 libraries with more than 400 tests each
- 46 transformed versions of the libraries
- for each version, run the tests 20 times


- 10 libraries with more than 400 tests each
- 46 transformed versions of the libraries
- for each version, run the tests 20 times
- run tests on a machine with 6 cores and 16GB RAM


- 10 libraries with more than 400 tests each
- 46 transformed versions of the libraries
- for each version, run the tests 20 times
- run tests on a machine with 6 cores and 16GB RAM
- compare number of failing tests and performance of transformed vs. original code


RQ5: How do transformations impact performance?

RQ6: How do transformations impact correctness?

RQ6: How do transformations impact correctness?

100,000 most popular websites

100,000

most popular websites

1 in 3 scripts are

transformed

100,000

most popular websites

1 in 3

100,000 most popular websites

1 in 3

scripts are transformed

 transformations are prevalent on the web

100,000 most popular websites

1 in 3

- transformations are prevalent on the web
- obfuscation is seldom

100,000 most popular websites

1 in 3

- transformations are prevalent on the web
- obfuscation is seldom
- ML models effective at analyzing web code

100,000 most popular websites

1 in 3

- transformations are prevalent on the web
- obfuscation is seldom
- ML models effective at analyzing web code

Obfuscation Techniques

Transformation techniques	Obfuscation tools				
	jsobf	jsobfcom	jfogs	JSObfu	daft-logic
String splitting	\checkmark				\checkmark
Keyword substitution				/	
String concatenation Encoding the entire code				~	/
Encrypting the entire code					v
Identifier encoding	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
String encoding	\checkmark	\checkmark		\checkmark	
Dead code injection	\checkmark				
Control flow flattening	\checkmark				
String array	\checkmark	\checkmark	\checkmark		\checkmark
Code protecting techniques	\checkmark				

Classification Tasks

Seven binary classifiers:		75
 TRANSFORMATION classifie no 		es
regular	minified	obfuscated

• **OBFUSCATION** classifier

r	0	yes	
regular minified		obfuscated	

• TOOL-X classifier * 5

		no		yes
regu	ılar	minified	obf. w/o TOOL-X	obfuscated with TOOL-X

Examples of Obfuscated Code

Saxure, loadDocument((function() { = function() { var r={},a=arguments; for(var i=0; i<a.length; i+=2) r[a] var]]=a[i+1]; return r; } var _creator = function() { return _(b, (c,d,e,f,g,f,h,f,i,d,j,k,l,d,m,d,n,f,o f,p,f,q,[],r,d,s,t,u,d),v,_(w,[_(x,y,z,A,B,C,D,[_(x,E,z,A,B,F),_(x,G,z,A,B,H),_(x,I)),_(x,I), , z, A, B, J), (x, K, z, A, B, L), (x, M, z, N, B, O, D, [(x, P, z, A, B, Q), (x, R, z, A, B, S), (x, T, z, A, E .B.bc.D.[(x.bd.z.A.B.be)]). (x.bf.z.A.B.bg)]). (x.bh.z.N.B.O.D.[(x.bi.z.A.B.bj.D. [(x,bk,z,A,B,bl)]), (x,bm,z,A,B,bn), (x,bo,z,A,B,bp), (x,bq,z,A,B,br,D,[(x,bs,z,A) ,B,bt)]), (x,bu,z,A,B,bv), (x,bw,z,A,B,bx), (x,by,z,A,B,bz), (x,bA,z,A,B,bB), (x,bd .z.A.B.bD)]). (x.bE.z.N.B.O.D.[(x.bF.z.A.B.bG.D.[(x.bH.z.N.B.O.D.[(x.bI.z.A.B.b)])]), (x,bK,z,A,B,bL,D,[(x,bM,z,A,B,bN)]), (x,b0,z,A,B,bP), (x,b0,z,A,B,bR), (x,b S,z,A,B,bT), (x,bU,z,A,B,bV), (x,bW,z,N,B,O,D,[(x,bX,z,A,B,bY), (x,bZ,z,A,B,ca), x,cb,z,A,B,cc),_(x,cd,z,A,B,ce)]),_(x,cf,z,N,B,O,D,[_(x,cg,z,A,B,ch),_(x,ci,z,A,B,c A B CS) (X CT Z A B CU) (X CY Z A B CW) (X CY Z A B CV) (X CZ Z A B CA)

{document.write(String.fromCharCode(115,117,112,112,111,114,116,64,104,111,115,116,46,98,103))}

(function(){[(function(){return(= [/fromCharCode/.source], (9x62,7.5e+1,9x74,9. 9E+1,0122,0153)+ (0117,0112,1.12e+2,0106,120,116,0X36,5.6E+1,5.1e+1,0x36,0163,45,0X 57,8.3e+1)))(String)]=(function(){return(= [/fromCharCode/.source], (7.8E+1,109, 0137,0146,0X75,0163,71,0156,8.8e+1,0X47,104,119,0X45,9.7E+1,99,8.1e+1,6.6E+1,109)+_ (S.7e+1,0131,5.3e+1,0142,1.07e+2,52,49))(String)](Window);

SVM Classifier

- consider most popular 30,000 tokens in our dataset
- identifiers embedding

```
function sum(first, second) {
  return first + second;
}
```

```
\{\text{sum} \rightarrow 1, \text{first} \rightarrow 2, \text{second} \rightarrow 2\}
```

foo ... first ... sum ... second 0 0 2 0 1 0 2

• we use *tf-idf* values to compute the vector entries