Freezing the Web:
A Study of ReDoS Vulnerabilities in JavaScript-based Web Servers

Cristian-Alexandru Staicu
Department of Computer Science
TU Darmstadt

Abstract

Regular expression denial of service (ReDoS) is a class
of algorithmic complexity attacks where matching a reg-
ular expression against an attacker-provided input takes
unexpectedly long. The single-threaded execution model
of JavaScript makes JavaScript-based web servers partic-
ularly susceptible to ReDoS attacks. Despite this risk and
the increasing popularity of the server-side Node.js plat-
form, there is currently little reported knowledge about
the severity of the ReDoS problem in practice. This pa-
per presents a large-scale study of ReDoS vulnerabilities
in real-world web sites. Underlying our study is a novel
methodology for analyzing the exploitability of deployed
servers. The basic idea is to search for previously un-
known vulnerabilities in popular libraries, hypothesize
how these libraries may be used by servers, and to then
craft targeted exploits. In the course of the study, we
identify 25 previously unknown vulnerabilities in popu-
lar modules and test 2,846 of the most popular websites
against them. We find that 339 of these web sites suf-
fer from at least one ReDoS vulnerability. Since a single
request can block a vulnerable site for several seconds,
and sometimes even much longer, ReDoS poses a seri-
ous threat to the availability of these sites. Our results
are a call-to-arms for developing techniques to detect and
mitigate ReDoS vulnerabilities in JavaScript.

1 Introduction

Regular expressions are widely used in all kinds of
software. Since regular expressions are easy to get
wrong [42], which may help attackers to bypass
checks [18, 5], developers are trained to think about
the correctness of regular expressions. In contrast, an-
other security-related aspect of regular expressions is of-
ten neglected: the performance, specifically, how long
it takes to match a string against a regular expression.
Unfortunately, given a specifically crafted input, match-
ing against a suboptimally designed regular expression

Michael Pradel
Department of Computer Science
TU Darmstadt

can easily take several minutes or even hours. For exam-
ple, matching the apparently harmless regular expression
/ (a+)+b/ against a sequence of 30 “a” characters on the
Node.js JavaScript platform takes about 15 seconds on
a standard computer.! Matching a sequence of 35 “a”
characters already takes over 8 minutes, i.e., the match-
ing time explodes exponentially.

If a server implementation suffers from this kind of
performance problem, then an attacker can exploit it to
overwhelm the server with hard-to-match inputs. This
attack is known as regular expression denial of service,
or short ReDoS. Such attacks are a form of algorithmic
complexity attack [10] that exploits the worst-case com-
plexity behavior of algorithms that match a string against
a regular expression. Since for some regular expres-
sions, the worst-case complexity is much higher than the
average-case complexity, an attacker can cause denial of
service with a few, relatively small inputs.

Even though ReDoS has been known for several years,
recent developments in the web server landscape bring
new and increased attention to the problem. The rea-
son is that JavaScript is becoming increasingly popular
not only for the client-side but also for the server-side of
web applications. However, the single-threaded nature of
JavaScript, where every request is handled by the same
thread, makes server applications much more susceptible
to ReDoS attacks. In practice, to avoid making the server
unresponsive by blocking this thread, developers try to
split any long-running computation into smaller events,
which are than handled asynchronously. The problem
is that in current JavaScript engines, matching a string
against a regular expression cannot be easily split into
multiple chunks of computation. As a result, a single re-
quest can effectively block the main thread, making the
web server unresponsive to any other incoming requests
and preventing it from finishing any other already estab-
lished requests.

'We use JavaScript syntax for regular expressions, i.e., a pattern is
either enclosed by slashes or given to the RegExp () constructor.

Despite the importance of ReDoS in web servers, there
is currently little reported knowledge about the preva-
lence of ReDoS vulnerabilities in real-world websites.
In this paper, we present the first comprehensive study
of ReDoS across a large number of websites. We seek to
answer the following questions:

e How widespread are ReDoS vulnerabilities in the
server-side part of real-world JavaScript-based web-
sites?

e What is the effect of vulnerabilities on the response
time of web servers?

e What kinds of vulnerabilities are the most prevalent?

e Are more popular websites less vulnerable to ReDoS?

o Are existing defense mechanisms in use and if so, how
effective are they in preventing ReDoS attacks?

Answering these questions involves solving two
methodological challenges. First, how to identify Re-
DoS vulnerabilities in the server-side of websites when
their source code is not available. We address this chal-
lenge based on a set of 25 previously unknown vulnera-
bilities in popular libraries and by speculating how these
libraries may be used in servers. Second, how to ana-
lyze which websites are exploitable without actually per-
forming a denial of service attack against live websites.
We address this challenge by triggering requests with in-
creasing input size, using both manually crafted exploit
inputs and randomly generated, harmless inputs, and by
statistically comparing the response times.

Using this methodology, we identify 339 websites that
suffer from at least one ReDoS vulnerability. Based on
experiments with locally installed versions of the vulner-
able server-side libraries, attacking these websites with
crafted inputs can cause a web server to remain unre-
sponsive for several seconds or even minutes. These
problems are due to a very small number of vulnerabil-
ities, with a single vulnerability that causes 241 sites to
be exploitable. While this is encouraging from a mitiga-
tion point of view, it also implies that an attacker aware
of a single, previously unknown vulnerability can cause
serious harm to several websites.

Ojamaa and Diiiina [27] were the first to identify Re-
DoS as a threat for the Node.js platform. Davis et al. [11]
confirm that such problems exist in popular modules and
report that 5% of the security vulnerabilities identified in
Node.js libraries are ReDoS. No prior work has studied
the impact of ReDoS on real-world web sites. Existing
work on detecting ReDoS vulnerabilities mostly targets
languages other than JavaScript. For example, Wiistholz
et al. [43] propose a static analysis of ReDoS vulnerabili-
ties in Java. The only available tool for JavaScript that we
are aware of is a small utility called safe-regex?, which
checks for simple AST-level patterns known to cause Re-

Zhttps://www.npmjs.com/package/safe-regex

DoS. However, this approach is notoriously prone to both
false positives and false negatives, since it reasons nei-
ther about the context in which these patterns appear
nor about the actual performance of regular expression
matching. Our work shows the urgent need for effective
tools and techniques that detect and prevent ReDoS vul-
nerabilities in JavaScript.

In summary, this paper contributes the following:

e A novel methodology for analyzing the exploitability
of deployed servers. The key ideas are (i) to hypothe-
size how server implementations may use libraries that
have previously unknown vulnerabilities and (ii) to as-
sess whether an attack is feasible without actually at-
tacking the servers.

e The first comprehensive study of ReDoS vulnerabil-
ities in JavaScript-based web servers. Out of 2,846
studied websites, we find 12% to be vulnerable.

e Empirical evidence that ReDoS is a real and
widespread threat. Our work calls for novel tools and
techniques that detect and prevent ReDoS vulnerabili-
ties.

e A benchmark of previously unreported ReDoS vul-
nerabilities and ready-to-use exploits, which we make
available for future research on finding, fixing, and
mitigating ReDoS vulnerabilities:

https://github.com/sola-da/ReDoS-vulnerabilities

2 Background

2.1 Regular Expression Matching

Regular expressions are used to check whether a given
sequence of characters matches a specified pattern. Most
implementations in modern programming languages ad-
dress this problem by converting the regular expression
into an automaton [38] and through a backtracking-based
search for a sequence of transitions from the initial to an
accepting state that consumes the given string. For ex-
ample, consider the regular expression /~ (a+b) 7$/ and
its equivalent automaton in Figure 1. Given the string
“aab”, the automaton starts from state s and has two
available transitions, to states 1 and 3. It first takes the
transition to state 1, which leads to the accepting state
a. Since the input string was not consumed and there
are no available transitions, the algorithm backtracks to
s and explores the transition to state 3 etc. After multi-
ple explorations the algorithm identifies the sequence of
transitionss -3 —+4—5—4—5—6—7 — a, which
reaches the accepting state and consumes all characters
of the input string.

OO o
oicotioG

Figure 1: Automaton for the regular expression
/~ (a+b) ?$/. s is the starting state and a is the accepting

@7@@%@@84
D@

Figure 2: Automaton for the regular expression

/~axaxb$/. s is the starting state and « is the accept-
ing state.

2.2 Regular Expression Denial of Service
(ReDoS)

The backtracking-based search may cause the algorithm
to backtrack a possibly large number of times. ReDoS
attacks exploit these pathological cases. For example,
consider the regular expression /~a*axb$/, its automa-
ton in Figure 2, and the input string “aaa”. Each charac-
ter “a” can be matched using two transitions, 4 — 5 and
8 — 9. Ateach step, the algorithm needs to decide which
of these two transitions to take. Eventually, since there
is no character “b” in the input string, the algorithm will
always fail when reaching state 11. However, before con-
cluding that the input string does not match the pattern,
the algorithm tries all possible ways of matching the “a”
characters. The example is a regular expression of super-
linear complexity [43], since the number of transitions
during matching is quadratic in the input size. Other reg-
ular expression even have exponential complexity, e.g.,
because of nested repetitions, such as in /~ (a*)*b$/.
In our study, we identify ReDoS vulnerabilities of both
these types and show that both are of importance for
server-side JavaScript.

2.3 Server-side JavaScript

JavaScript is becoming more and more popular, includ-
ing the server-side Node.js platform, which advocates a
single-threaded, event-based execution model that uses
asynchronous I/O calls. In Node.js, the main thread of
execution runs an event loop, called the main loop that
handles events triggered by network requests, I/O opera-
tions, timers, etc. A slow computation, e.g., matching a
string against a regular expression, slows down all other
incoming requests. Compared to multi-threaded web

ReDoS analysis
of libraries

Module level
vulnerabilities

npm modules —»|

A 4

Usage scenarios —»| Exploits creation

Exploits using
HTTP requests

Local machines

Live websites v

List of websites
using Node.js

List of vulner-
able websites

ReDoS analysis
of websites

Figure 3: Overview of the methodology.

servers, such as Apache, the single-threaded execution
model compounds the problem in JavaScript. For exam-
ple, consider a regular expression that takes more than
an hour to match, which we show to exist in widely used
JavaScript software. To completely block an Apache
web server, we need to send hundreds of such requests,
each blocking one thread. Depending on the number of
available parallel processing units, the operating system,
and the thread pool size, new requests can still be han-
dled even with hundred of busy threads running. In con-
trast, in Node.js one such request is enough to completely
block the server for an hour. To make matters worse,
even less severe ReDoS payloads can significantly de-
grade the availability of a Node.js server, as we show in
Section 4.3.

3 Methodology

This section presents our methodology for studying Re-
DoS vulnerabilities in real websites. The overall goals of
the methodology are to understand (i) how widespread
such vulnerabilities are, (ii) whether an attacker could ex-
ploit them to affect the availability of live websites, and
(iii) to what extent existing defense mechanisms address
the problem. To answer these questions, our methodol-
ogy must address two major challenges. The first chal-
lenge is a technical problem: Since the server-side source
code of most websites is not available, how to know what
vulnerabilities a website suffers from? The second chal-
lenge is an ethical concern: How to study the potential
impact of attacks on live websites without actually caus-
ing noticeable harm to these websites?

Figure 3 shows a high-level overview of the methodol-
ogy. We address the two challenges through experiments
performed on machines under our control and on live
websites. A main insight to address the first challenge
is to use previously unknown vulnerabilities in popular
JavaScript libraries and to speculate how servers may
use these libraries. More precisely, we analyze third-
party libraries, called node package manager modules

(npm packages or npm modules for short), to find vulner-
abilities that may be exploitable via HTTP requests. We
then hypothesize how the server implementation may use
these packages and create exploits for these scenarios.

To address the second challenge, we present a tech-
nique that tests whether a site is vulnerable but that
avoids blocking the site for a noticeable amount of time.
The basic idea is to start with very small payloads that
do not require more computation time than normal web
requests, and to then slowly increase the payload — just
long enough to claim with confidence that the site could
be exploited if an attacker used larger payloads. To de-
cide on the size of payloads sent to live websites, we run
experiments on locally installed web servers that use the
vulnerable packages.

An alternative to experimenting with live websites
would be to locally install open-source web applications.
We discarded this idea because it would limit the scale of
our study to the few web sites that disclose their server-
side code, because it would remain unclear whether the
results generalize to real-world sites, and because we
could not study which counter-measures are deployed in
practice.

3.1 Identifying Websites with Server-side
JavaScript

We consider the most popular one million websites ag-
gregated by Alexa® as candidate sites for our study.
Many of these websites do not use JavaScript on the
server-side and analyzing all the websites against our ex-
ploits is prohibitive. Instead, we select sites that run the
currently most popular framework for JavaScript-based
web servers, Express4. To this end, we make a request
to each of the one million websites and check whether
the header X-Powered-By is “Express”. The framework
sets this value by default on a fresh installation. In to-
tal, 2,846 sites set this header which account for a mar-
ket share of around 0.3%, consistent with estimates by
others.’ Because headers may be filtered to prevent at-
tackers from targeted attacks and because frameworks
other than Express exist, our selection of sites is likely
yield an underapproximation of the impact of ReDoS.
Figure 4 shows the number of Express-based websites
in batches of 100,000 sites, ordered by popularity. We
observe that Express tends to be used by the more pop-
ular websites, confirming the importance of studying the
security of JavaScript-based servers.

3http://www.alexa.com/

“https://expressjs.com/

Shttps://w3techs.com/technologies/details/
ws-nodejs/all/all

600
5001
400 1
3001
2001
100 |

Number of sites using Express

A, 4y = 8 T S Gy) S G
0% % % % G s s
6_. 2, %, g 6 6, S e, NG,

0% 0% 00,?- 00\’? 0% 0% 0% 0041 47~
Popularity rank

Figure 4: Number of server-side JavaScript websites
within a given popularity range.

3.2 Finding ReDoS Vulnerabilities in Li-
braries

Our methodology relies on knowing previously un-
known, or at least not yet fixed, ReDoS vulnerabilities
in popular npm modules. Similar to previous work [43],
we consider a regular expression to be vulnerable if we
can construct inputs of linearly increasing size that cause
the matching time of the expression to increase super-
linearly. To identify previously unknown vulnerabilities,
we use a combination of automated and manual analy-
sis, similar to what a potential attacker might do. This
technique is not the contribution of this paper, but rather
a way to enable our study. In principle, any other way of
identifying ReDoS vulnerabilities could be used instead,
including existing analyses [43], which however, are cur-
rently not available for JavaScript.

At first, we download the 10,000 most popular mod-
ules and extract their regular expressions by traversing
the abstract syntax trees of the JavaScript code. This
yields a total of 324,791 regular expressions, with a mean
of 63.67, a median of 5.00 and a maximum of 19,791 per
module. After removing regular expressions that con-
tain no repetitions, and hence are immune to algorithmic
complexity attacks, we obtain a total of 138,123 expres-
sions, with mean 37.93 and median 4.00 per module.

Next, we semi-automatically search for regular ex-
pression patterns that are known to be vulnerable. For ex-
ample, we search for expressions containing repetitions
of a negated group followed by a character. The second
regular expression in Figure 6 is an example because it
contains the subexpression ["=]+=. A regular expres-
sion that is not anchored with a start anchor and contains
this pattern is likely to be vulnerable. The reason is that
the repetition group is generic enough to contain most
of the possible prefixes and the = character guarantees
that there exists a failing suffix. For example, the regular
expression /ab[~=]+=/ can be exploited using a long
string "abababab. .".

Given a set of possibly exploitable regular expression,

we manually inspect the context in which the regular ex-
pressions are used. The goal is to find matching oper-
ations on data that may be delivered through an HTTP
request to a web server. To this end, we focus on (i)
modules included in the Express framework, (ii) middle-
ware modules that extend this framework, and (iii) mod-
ules that manipulate HTTP request components, such as
the body or a specific header. For regular expressions
in these modules, we keep only those with a possible
data flow from the package interface or from an HTTP
header to the regular expression. Overall, it took one of
the authors only a couple of days to find 25 such vul-
nerabilities in widely used npm modules, showing that
a skilled individual can attack real-world websites with
moderate effort. A more powerful attacker could easily
detect a larger number of vulnerabilities and perform a
larger-scale attack.

3.3 Creating Exploits

Based on the ReDoS vulnerabilities in npm modules,
we create exploits targeted at web servers that use these
modules. The main idea is to hypothesize how a server-
side web application might use a module. To this end,
we set up a fresh Express installation and implement an
example web application that uses the module. For ex-
ample, for a package that parses the user agent, we build
an application that parses the user agent of every HTTP
request for the main page, which might be used to track
visitors. Next, we try to create an HTTP request where
user-controlled data reaches the vulnerable regular ex-
pression, and craft input values that trigger an unusu-
ally long matching time. For crafting the input, we try
to confuse the regular expression engine by forcing it to
backtrack because the input can be matched in multiple
ways [21, 43]. While creating exploits, we assume that
the maximum header size is 81,750 characters, which is
the default in Express.js. If we succeed in crafting an in-
put that takes more than five seconds, we consider the
vulnerability as exploitable and consider it for the re-
mainder of the study.

To further assess the impact of the exploits, we mea-
sure how much longer it takes to process a crafted input
compared to a random string of the same length. We
use two ways of measuring the time. First, we mea-
sure the matching time of the regular expression, i.e., the
time needed to check whether a string matches the regu-
lar expression. Second, we measure the time of an entire
HTTP request, called response time. The response time
may include various other components, such as HTTP
parsing and serialization, DNS resolving, routing time
for the package, and dealing with HTTP retransmissions
or package fragmentation. To measure the response time
of a site, we request its main page. For complex sites,

this measure underapproximates the time a human user
needs to wait for the page to load, because complex sites
require separate requests for images, etc.

3.4 ReDoS Analysis of Websites

The next step is to measure how many websites are vul-
nerable to a ReDoS attack based on one of the exploits.
The main challenge is to draw meaningful conclusions
about the harm that an attacker could cause, without ac-
tually attacking live websites. During our initial experi-
ments we sent one request with a crafted header that ap-
peared to make the analyzed website unresponsive for al-
most a minute. The goal of our methodology is to avoid
this type of mistake.

We address this challenge by triggering requests with
increasing input sizes, using both crafted and random in-
puts, while measuring the response times. Based on lo-
cally performed experiments, we choose input sizes that
are unlikely to block the server for more than a small,
configurable amount of time (we use two seconds in our
experiments). If the response time with crafted inputs
grows faster than with random inputs, then we classify
the website as exploitable.

Measuring the response time in a reliable way is non-
trivial due to DNS resolving, network caching, delays,
retransmissions, and other influencing factors. Another
issue is how to determine whether the response time is
larger than another in a statistically reliable way. We ad-
dress these issues by adapting a technique originally used
for comparing the performance of software running on a
virtual machine [16, 29]. The basic idea is to repeatedly
measure the response time and to conclude that crafted
inputs cause a higher response time than random inputs
only if we observe a statistically significant difference.

More specifically, to measure the response time for a
given input, we first repeat the request n,, times to “warm
up” the connection, e.g., to fill network caches, and then
repeat the request another n,, times while recording the
response times. Given k pairs of increasingly large ran-
dom and crafted inputs (iandom icrafred)> Where the two
inputs in a pair have the same size, we obtain k pairs
(Trandom and Tyqfreq) of sets of time measurements (with
|Trandom| = |Teraftea| = nm). For each input size, we com-
pare the confidence intervals of the values in 7,44, and
T.rafiea and conclude that the response times differ if and
only if the intervals do not overlap. If the response times
differ for all k input sizes, we quantify the difference
for an input size as the difference between 7,440, and
T ¢rafreas Where T is the average of the times in 7. For
k input sizes, this comparison gives a sequence of differ-
ences d1,..,d;. Finally, we consider a website to be ex-
ploitable if dy < dp < .. < dy. Intuitively, this means that
the response times for random and crafted inputs have a

statistically significant difference, and that this difference
increases when the input size increases.

To execute these measurements, we need to pick val-
ues for n,,, n,, k, and the k input sizes. We use n,,=three,
np=five, and k = 5 because these values are large enough
to draw statistically relevant conclusions for most web-
sites yet small enough to not disturb the analyzed server.
For picking the k input sizes, the challenge is to ensure
that measure a difference when there is one without re-
peatedly causing the server to block for a longer period
of time. We address this challenge by experimenting on
a locally installed version of the vulnerable package and
by choosing input sizes that take approximately 100ms,
200ms, 500ms, 1s and 2s to respond to.

Our setup allows us to assess whether a website could
be exploited without actually attacking it. Since we take
measurements in a sequential manner and since the over-
all number of requests per site is small, we allow legiti-
mate users to be served between our requests. Moreover,
the servers of popular websites implement some kind of
redundancy, such as multiple Node.js instances in a clus-
ter, i.e., our measurements are likely to block only one
such instance at a time. In contrast, an attacker would
likely send both more requests and requests with larger
inputs, which can cause severe harm to vulnerable sites,
as we show in Section 4.3.

3.5 Analysis of Mitigation Techniques

Some sites reject requests with large headers and instead
return a “400 Bad Request” error. This mitigation can
limit the damage of ReDoS attacks. To measure whether
a site uses this mitigation technique, we create benign
requests of different sizes and measure how often a site
rejects a request.

4 Results

This section presents the results of applying the method-
ology described in Section 3 to live, real websites. We
perform our measurements using three different ma-
chines depending on the experiments: a ThinkPad 440s
laptop with four Intel i7 CPUs and 12GB memory (Sec-
tion 4.1), a third party commercial web server with
512MB memory (Section 4.3 and 4.4) and a server with
48 Intel Xeon CPUs and 64GB memory (from Sec-
tion 4.6 on).

4.1 Vulnerabilities and Exploits

Figure 5 shows the modules for which we found at least
one vulnerable regular expression that can be exploited
through the module’s interface. At the time of perform-
ing our experiments, each vulnerability was working on

Module Version Number of Downloads

dependencies in July 2017
debug 2.6.8 16,055 54,885,335
lodash 4174 49,305 44,147,504
mime 1.3.6 2,798 22,314,018
ajv 522 758 17,542,357
tough-cookie 232 302 15,981,922
fresh 0.5.0 197 14,151,270
moment 2.18.1 14,421 10,102,601
forwarded 0.1.0 31 9,883,630
underscore.string 334 2,486 7,277,966
ua-parser-js 0.7.14 225 5,332,979
parsejson 0.0.3 19 4,897,928
useragent 2.2.1 191 3,515,292
no-case 2.3.1 18 3,321,043
marked 0.3.6 2,624 3,012,792
content-type-parser 1.0.1 8 2,337,147
platform 1.3.4 128 757,174
timespan 2.3.0 34 523,290
string 333 911 421,700
content 3.0.5 9 316,083
slug 0.9.1 499 151,004
htmlparser 1.7.7 178 138,563
charset 1.0.0 36 112,001
mobile-detect 1.3.6 101 107,672
ismobilejs 0.4.1 50 44,246
dns-sync 0.1.3 7 10,599

Figure 5: Modules with at least one previously unknown
vulnerability.

the latest release of the package. The packages vary in
the number of dependencies and downloads, but we can
safely conclude that ReDoS vulnerabilities are present
even in very popular packages.

Given the amount of possible damage entailed by the
vulnerabilities, we have invested significant efforts to
disclose them in a responsible way. For each vulnera-
bility, we have contacted the developers either directly
or through the Node Security Platform®, and gave them
several months to fix the problem before making it pub-
lic. 14 of the 25 have been fixed by now and are listed as
advisories on the Node Security Platform. For the oth-
ers, the developers are either still in the process of fixing
or decided to leave the task of fixing to the community.
The complete list of vulnerabilities, along with details on
their current status is available for the reviewers.’

As explained in Section 3.3, we try to create exploits
for the vulnerabilities by hypothesizing how web server
implementations may use the vulnerable modules. Fig-
ure 6 shows the modules and usage scenarios for which
we could create an exploit. For all the scenarios we as-
sume the payload is sent using a specific HTTP header.
We believe that HTTP bodies, UDP packages or Web-
Socket messages can also be used for the same purpose.
The last column of Figure 6 shows the JavaScript imple-
mentation of the usage scenario. We run this implemen-
tation on our local server to experiment with the exploit.

®https://nodesecurity.io/advisories

"Following this link may de-anonymize the authors: https://
docs.google.com/spreadsheets/d/1rnR8zsXeAleccrpxeZKO_
LtQ01c8j_u60IR7nnVQgbE/edit?usp=sharing

ID Module Vuln. reg. expr. Header Usage scenario JavaScript example
o /(?:charset|encoding) B e e . " " .
1 charset \s#*o\s*[7"]7 *([\w\oT1+)/1 Content- The website uses this require("charset")(req.headers);
Type package to parse the con-
tent type of every request.
/CIoN/T+\/["\s;1+)(?:(?
. . =(7:
;\sf;\s*ﬁoun?afy 4% var content = require("content");
CLo"1+)" 1 CL75"T1+))) | : :
2 content (7:\s#:\s*["=]+=(?: (?:" Content- The website uses this content.type(
(2i 0" 1+) ") [(2:0~:0] Type package to parse the con- req.headers["content-type"]);
+))))*$/i tent type of every request.
3 fresh / x, x/ If-None- The website uses ;ar fresh = requlr?(fresh");
. resh(req.headers);
Match express, which by
default uses this package
to check the freshness of
every request.
4 forwarded / *, */ X- The el TS var forwar(ied = require(fc.)rwarded E
w var addrs = forwarded(req);
Forwarded- express and the “trust
For proxy” option is set. This
package is then used to
check which proxies a
request came through.
new RegExp("Dell.*Streak] var MobileDetect =
Dell.*Aero|Dell.*Venue| require ("mobile-detect");
. DELL.*Venue Pro|Dell Flashl| var headers =
5 mobile- Dell Smoke|Dell Mini 3iX| User- THESWEbSI(S l§eb this req.headers["user-agent"];
detect XCD28 | XCD35 \\b001DL\\b]| Agent package to get informa- yar ng = new MobileDetect (headers);
\\b101DL\\b |\\bGSO1\\b") tion about the requester. md . phone () ;
var platform = require("platform");
6 platform /° +| +$/g User- The website uses this 'oF Readers = " D o
. req.headers["user-agent"];
Agent package to get informa- .,y agent = platform.parse(headers);
tion about the requester.
var useragent =
/ip[honead]l+(?7:.*o0s\s require ("ua-parser-js")
7 ua-parser- ([\wl+)*\slike\smacl|; User- The website uses this var headers =
js \sopera)/ Agent package to get informa- req.headers["user-agent"]
tion about the requester. var agent = useragent.parse(headers);
/((?:[A-20-91+| [A-z\-1+ ?)7?
(?: the)?(?7:[Ss][Ppll[Iil _ ; " "y .
[pal [2e] (Rr] | [S3] crape| ver useragent - require(“useragent);
A-Za-z0-9-1%(?:["C]["U . .
8 useragent EBb] :tT [Cel][;i] [JEa]]H[m]u]) User- The website uses this req.headers["user-agent"];
[L11) [A-z0-9]%)(?: (?: Agent package to get informa- var agent =

[\/11 v)(\d+)(?:\.(\d+)
(2:\. (\d+))?)?)7/

tion about the requester.

useragent .parse (headers);

Figure 6: Vulnerable regular expressions and usage scenarios we hypothesize the vulnerable modules to be involved

m.

Most of the scenarios and their implementations are
relatively simple. This simplicity shows that an attacker
that follows a methodology similar to ours could create
exploits that might work for a wide range of websites
with relatively little effort. For an attack targeted at a
specific website, we believe that more complex scenar-
ios could be built, e.g., involving multiple HTTP requests
and domain knowledge. For example, the marked pack-
age provides a parser for the markdown format. By craft-
ing a specific markdown document, an attacker can block
the main loop for hours. However, to deploy the exploit,
complex interactions with the server are needed. That is,
the attacker needs to figure out which part of the website
may use a markdown parser and how to provide a doc-
ument that will be processed by the parser. We believe
that such a scenario is realistic, but it requires an in-depth
analysis of each website. We leave for future work to test

this hypothesis. In this work, our goal is to assess the
effect of exploits that can be deployed at a large scale.
Therefore, we only consider very simple usage scenarios
that can be triggered with a single HTTP request made to
the main page.

To better understand the vulnerabilities, Figure 6
shows for each vulnerable module the vulnerable regu-
lar expressions. Some of the expressions are non-trivial,
making it hard for developers to focus on possible Re-
DoS attacks in addition to the correctness of the reg-
ular expression. Four of these regular expressions can
be successfully identified by a recent approach proposed
by Wiistholz et al. [43], which targets Java applications,
though. The remaining four regular expressions cannot
be detected by their approach due to differences between
the regular expression semantics of Java and JavaScript.

2000
/'g\ 1500 |- charset
~ fresh —%—
Q y
= forwarded —5—
= 1000 content —&— |
o0
. 5 mobile-detect —©
% ¥ latf ——
,g 500 platform 4
E L ua-parser-js —#—
! useragent
0! L L L L L L
o < < 57 & < % Ve
(2) (2 2 , 2 [
) 2 2 2 2 @)
Y % % Y Y % %

Input size (number of characters)
Figure 7: Matching time for different input sizes.

4.2 Matching Time

We use the exploits to measure the influence of the size of
the input to the matching time of the vulnerable expres-
sion (Figure 7). For most of the exploits, the input depen-
dency seem to be quadratic, reaching one second match-
ing time within 20,000 to 40,000 characters. For two
exploits, the input dependency is presumably exponen-
tial, reaching one second matching time with less than
1,000 characters. We consider any of these eight exploits
to be harmful because they may impact a website’s avail-
ability (Section 4.3 and because even a non-exponential
ReDoS vulnerability may aid an attacker in mounting a
DoS attack (Section 5.1).

To further illustrate the effectiveness of inputs crafted
for a specific regular expression, we measure the match-
ing time for each vulnerable module with randomly cre-
ated inputs. It turns out that random string inputs of
the same size as our crafted exploits cause much lower
matching times. The maximum matching time across the
eight attacks is 20 milliseconds for inputs with 100,000
characters. We conclude that crafting inputs for vulner-
able regular expressions is significantly more effective,
from an attacker’s perspective, than launching a brute-
force DoS attack with randomly created inputs.

4.3 Availability

We now show that the matching time of a regular ex-
pression has a direct impact on the availability of a web
server. To show the threat to availability posed by ReDoS
exploits, we create a simple Express application with two
features: it replies with a “hello world” message when
called at the “/echo” path, and it calls the forwarded
module with the request headers when called at the “/re-
dos” path. We choose this module because it appears in
Figure 7 to be the /least harmful in our set of exploits, i.e.,
we are underestimating the negative impact on availabil-
ity. We then upload this simple application on a machine

10,000
1,000%

100%g .

Response time (ms), log. scale

10 :
Request number
Figure 8: Impact of differently sized payloads on a

server’s response time. Note the logarithmic y-scale.
Payloads are plotted in increments of 1,000 characters.

running Node.js, provided by a commercial cloud plat-
form?.

We set up two other machines to concurrently send
request. One machine, called the victim, measures the
time it takes to trigger 100 requests of the "’hello world”
message. This victim machine triggers the next request
once the previous request has been responded to. At the
same time, the other machine, called the attacker, deliv-
ers 1,000 ReDoS payloads, by triggering all 1,000 re-
quests at once. The victim machine starts its requests
immediately after the victim machine has triggered its
requests.

We vary the payload size from O characters to 8,000
characters in increments of 1,000 characters. A zero-
sized payload is a request with an empty header instead
of one that exploits the ReDoS vulnerability. We con-
sider the zero-sized payload to check whether a Node.js
server can be blocked using a brute-force strategy. We
chose the upper limit for the payload size because, by de-
fault, the web server provider limits the size of the header
fields to 8,500 characters. Other hosting providers allow
significantly larger headers, as we report later in this sec-
tion.

Figure 8 shows the response times measured at the vic-
tim machine for the first 25 ”/echo” requests. Payloads
smaller than 4,000 characters have no significant effect
on the response time of the server. In contrast, payloads
larger than this value delay as many as eight requests
with a maximum delay of 20 seconds. By increasing the
size of payloads, an attacker can control both the number
of requests we delay and their duration. For the largest
payloads we use, we even experienced dropping of re-
quests.

This result is particularly remarkable because an indi-
vidual payload of size 4,000 does not require an immense
amount of time to respond to. We separately measured
the CPU time required to respond to one such request

$http://heroku.com

50 Il Il Il Il Il Il Il Il
O S ¢y la <y D Uy I ¥, ¥
O D Y % T % o D D
Matching time (ms)
Figure 9: Correlation between server computation time
and request response time.

and find it to take only 5.73 milliseconds, on average.
However, several requests together can delay the victim’s
request by up to 20 seconds. This finding shows that
the ReDoS payloads have a cumulative effect and even a
small delay in the main loop can cause significant harm
for availability.

We remind the reader that the above experiment uses
the smallest payload in our data set, forwarded. There-
fore, if we show that even this exploit poses a threat to
availability, we can conclude that the rest of the exploits
also do. For more severe ReDoS vulnerabilities, e.g. in
ua-parser-js, there is even no need to evaluate the im-
pact on availability. As described in the Section 2, one
single such payload is enough to completely block the
server for as long as the matching takes. Considering
that with 50-60 characters we predict a CPU computa-
tion time in the order of years, such vulnerabilities are a
very serious threat to availability.

4.4 Response Time vs. Matching Time

Our methodology relies on the assumption that small
changes in the server computation time have an effect
on clients. To validate this assumption we again use
the forwarded package and the commercial web server
setup from the previous section. We use 1,000 pay-
loads smaller than 8,000 characters. The largest one of
these payloads produces a matching time smaller than
100 milliseconds on our local machine. We measure
the time spent by the server in the forwarded package
and the time it takes for a request to be served at the
client level. We then plot the relation between these two
time measurements in Figure 9. The correlation between
both measurements is 0.99, i.e., very strong. The strong
correlation shows that the delays introduced by the net-
work layer are relatively constant over time and that the
server computation time is the dominant component in
the response time measured at the client-side. Of course,
the observed value depends on the chosen web server

Module P1: P2: P3: P4 P5:

100ms 200ms 500ms 1s 2s
fresh 12,000 17,000 27,000 37,500 53,500
forwarded 12,000 17,000 26,500 38,000 53,500
useragent 500 650 925 1,150 1,450
ua-parser-js 38 39 40 41 42
mobile-detect 10,500 15,500 25,000 36,500 50,500
platform 7,500 11,000 17,500 25,000 34,500
charset 10,500 15,500 24,000 34,000 43,000
content 8,000 11,000 18,000 25,500 35,500

Figure 10: Number of characters in each payload needed
to achieve a specific delay in a vulnerable module.

provider and the current server load, but we can safely
conclude that measuring time at the client level is a good
enough estimation of the server-side computation time.

4.5 Dimensioning Exploits

Choosing an appropriate size for the payload is a cru-
cial part in our methodology and distinguishes our study
from a real DoS attack on websites. The goal of this step
is to find a payload size that is large enough to check
whether a website is vulnerable to a specific attack, but
small enough to only block the website for a negligible
amount of time. To this end, we locally run each exploit
five times with a payload of increasing size and stop the
process when the matching time exceeds two seconds.
We consider five target matching times, 100ms, 200ms,
500ms, 1s, and 2s, and choose the payload size that pro-
duces the closest matching time to the target time.

Figure 10 shows the values for each target time and
vulnerable module. For example, for the platform vul-
nerability, we obtain a matching time of 200ms with
a payload of 11,000 characters. The useragent and
ua-parser-js packages, whose matching times grow
at a much faster rate, requiring less than 1,500 characters
to cause a delay of 2s.

4.6 Vulnerable Sites

The goal of the next step is to assess to what extent real
websites suffer from ReDoS vulnerabilities. Based on
the five payload sizes for each exploit, we create attack
payloads and random payloads for each exploit and pay-
load size. We send these payloads to the 2,846 real web-
sites that are running an Express webserver (Section 3.1).
We warm up the connection three times and then mea-
sure five response times for both random and malicious
inputs. Using the methodology described in Section 3.4,
we then decide based on the measured response times
whether a site is vulnerable. If for some reason, we
could not send three or more out of the five payloads to
a specific website, we consider that website to be non-
vulnerable.

Overall, we observe that 339 sites suffer from at

Random —— Malicious —*—
2500 ‘ ‘ i ‘

2000 -
1500 1
1000

500 1 x

T
x

Response time (ms)

Payload number

(a) Response time for an vulnerable site.

Random —+— Malicious —*—

Response time (ms)

Payload number

(b) Response time for a non-vulnerable site.

Figure 11: Effect of increasing payload sizes on the re-
sponse time of two websites.

least one of the eight vulnerabilities. 66 sites actu-
ally suffer from two vulnerabilities and six sites even
from three. This result shows that ReDoS attacks are
a widespread problem that affects a large number of
real-world websites. Given that our methodology is de-
signed to underestimate the number of affected sites,
e.g., because we consider only eight exploits, the actual
number of ReDoS-vulnerable sites is likely to be even
higher. Moreover, we expect the growing popularity of
JavaScript on the server side to further increase the prob-
lem in the future.

To illustrate our methodology for deciding whether a
site is vulnerable, consider two example websites. In
Figure 11, we plot for each of the five payload sizes the
response time for malicious and random inputs. The fig-
ure shows the mean and the confidence intervals for a
vulnerable site in Figure 11a and for a non-vulnerable
site in Figure 11b. The response time grows signifi-
cantly faster for the malicious payloads in the vulnera-
ble site, reaching slightly more than two seconds for the
fifth payload. In contrast, for the non-vulnerable site, the
response time for both malicious and random payloads
seems to grow linearly. Since the confidence interval for
the response times in Figure 11b overlap, we classify this
website as non-vulnerable. By inspecting other websites
classified as vulnerable by our methodology, we observe
patterns similar to Figure 11a. Therefore, we conclude
that our criteria for deciding if a website is vulnerable
are valid.

10

Exploit Affected sites
fresh 241
forwarded 99
ua-parser-js 41
useragent 16
mobile-detect 9
platform 8
charset 3
content 0

Figure 12: Number of websites affected by specific vul-
nerabilities.

4.7 Prevalence of Specific Vulnerabilities

Figure 12 shows the number of websites affected by each
vulnerability. Perhaps unsurprisingly, the vulnerabilities
in fresh and forwarded have most impact, since these
two modules are part of the Express framework. One
of them needs to be activated using a configuration op-
tion, while the other module is enabled by default. One
may ask why not all Express analyzed websites suffer
from this problem. The reason is the way we dimension
our payloads: Many Express instances limit the header
size, and hence we cannot send large enough payloads
to confirm that the sites are vulnerable. The other six
vulnerabilities affect websites with a frequency that is
roughly proportional to the popularity of the respective
modules. For example, the vulnerability in the popular
useragent affects more websites than the vulnerabil-
ity in the less used charset module. To our initial sur-
prise, we cannot confirm any site vulnerable due to the
content module. After more careful consideration, we
realized that there are two more popular alternatives for
parsing the Content-Header and the content package
seems to be more popular among users of the hapi. js
framework, which is a competitor of Express.

From an attacker’s perspective, the distribution of vul-
nerabilities is great news, because exploits are portable
across websites and knowing a vulnerabilities is suffi-
cient to attack various websites. Likewise, the distribu-
tion is also good news for the community, showing that
one can lower the risk of ReDoS in multiple websites by
fixing a relatively small set of popular packages.

4.8 Influence of Popularity

Are ReDoS vulnerabilities a problem of less popular
sites? In Figure 13, we show how the vulnerable sites
are distributed across the Alexa top one million sites.
For each point p on the horizontal axis, the vertical axis
shows the number of exploitable sites with popularity
rank < p. For example, there are 61 vulnerable sites
in the top 100,000 websites, with one site in top 1,000
and nine in top 10,000. As can be observed from the
distribution, the vulnerabilities are roughly equally dis-
tributed among the top one million sites. There is even

350
3001
250 1
200 1
150 1
100+

[
o o
T

Number of vulnerable websites

Popularity ranking
Figure 13: Cumulative distribution function showing the
popularity of vulnerable sites. Each point on the graph
shows how many sites among the top x sites suffer from
at least one vulnerability.

3000
% &
L 5§
“ 2500 fresh \B
8 2000 F forwarded
‘B
..8 ua-parser-js —k—
E 1500 - useragent —H=—
; 1000 - mobile-detect ——
Ra) platform —&—
g 500 r charset —@—
Z content —=—
0 < ‘/ ‘/ ‘/ <
© % %, %, %,
(4 %

Header size
Figure 14: Number of websites that accept a payload of
a specific size. Note the logarithmic x-scale.

a slight tendency toward more vulnerabilities among the
more popular websites. This tendency can be explained
by the trend we have seen in Figure 4, that server-side
JavaScript tends to be more popular among popular web-
sites. Overall, we can conclude that ReDoS vulnerabili-
ties are a general problem that affects sites independent
of their popularity ranking.

4.9 Use of Mitigation Techniques

As mentioned before, some websites refuse to process a
request whose header size exceeds a certain size. In Fig-
ure 14 we plot for each exploit how many websites accept
a payload of a given size. As can be observed, most web-
sites accept headers that are smaller than 10,000 charac-
ters, but only few websites accept headers that are, for
instance, 40,000 characters long. As we have shown in
Section 4.3, 10,000 characters are enough to do harm
even with the least serious vulnerability. Therefore, the
current limits that the websites apply on the header size
are insufficient and they do not provide adequate protec-
tion against DoS.

Another interesting trend to observe in Figure 14 is
that even for the most harmful exploit, useragent, for
which we require payloads between 38 and 42 characters

11

only, the number of websites that accept larger payloads
decreases over time. This is surprising since for other ex-
ploits like mobile-detect there seem to be more web-
sites to accept 10,000 characters long headers. We be-
lieve this observation to be due to the fact that some
websites refuse to process many requests from the same
user in a short period of time. For instance, our largest
payload is sent after approximately 50 other requests of
smaller size and the site refuses to serve it. This is a well
known network-level protection against DoS, but there
seem to be only around 200 websites to implement it.
However, limiting the number of requests is no silver bul-
let against denial of service attacks, especially when the
attacker has the resources to deploy a distributed denial
of service attack.

4.10 Threats to Validity

One threat to validity for our study is that we rely on time
measurements performed over the network to estimate
the likelihood of a ReDoS vulnerability. One may argue
that these measurements should not be trusted and that
pure chance made us observe some larger slowdowns
for malicious payloads. We address this threat in mul-
tiple ways: we show that for commercial web hosting
servers there is a high correlation between response time
and server CPU time, we repeat measurements multiple
times, and we draw conclusions only from statistically
significant differences.

Another potential concern is that the exploits we cre-
ated are too generic and happen to cause slowdown in
another regular expression than the one we created them
for. We believe that this situation would only impact our
ability to tell which module is used on the server-side and
not the impact of a ReDoS attack. Moreover, five of our
exploits rely on a specific sequence of characters in the
payload to the effective. These sequences of highly con-
textual characters need to be present in the beginning or
at the end of the exploit. Removing any of them would
make the exploit unusable. Therefore, we believe that
at least for these vulnerabilities it is very likely that our
exploits indeed trigger the intended regular expression.

5 Discussion

In this section, we discuss the potential of a large-scale
DoS attack on Node.js websites and some defenses we
recommend to minimize the impact of such an event.
Finally, we describe an unexpected implication of our
study: that algorithmic complexity attacks can be used
for software fingerprinting.

5.1 Impact of a Large-scale Attack

Compared to a regular DoS attack, a ReDoS vulnerabil-
ity enables an attacker to launch an attack with fewer re-
sources. As shown in Section 4.3, even the least harmful
vulnerabilities we identify can be a lethal weapon when
used as part of a large-scale DoS attack, because the at-
tacker can send payloads that hang the loop for hundreds
of milliseconds, several seconds, or even more, depend-
ing on the vulnerability. We remind the reader that with
just eight standard attack vectors we could affect hun-
dreds of websites.

It is worth emphasizing once again that this issue
would not be as serious in a traditional thread-based
web server, such as Apache. This is because the match-
ing would be done in a thread serving the individual
client. In contract, in an event-based system, the match-
ing is done in the main loop and spending a few seconds
matching a regular expression is equivalent to completely
blocking the server for this amount of time.

A large-scale ReDoS attack against Node.js-based
sites is a bleak scenario for which, as we have shown,
many websites are not prepared. To limit this risk, we
have been working with the maintainers of vulnerable
modules to fix vulnerabilities. In addition, we urgently
call for the adoption of multiple layers of defense, as out-
lined in the following.

5.2 Defenses

First of all, to limit the effect of a payload delivered
through an HTTP header, the size of the header should
be limited. For more than 15% sites, we could success-
fully deliver headers longer than 25,000 characters. We
are not aware of any benign use cases for such large
HTTP headers. Therefore, a best practice in Node.js ap-
plications should be to limit the size of request headers.
This kind of defense would mitigate the effects of some
potential attacks, but is limited to vulnerabilities related
to HTTP headers. In contrast, vulnerabilities related to
other inputs received from the network, e.g., the body of
an HTTP request, would remain exploitable.

Another defense mechanism could be to use a more
sophisticated regular expression engine that guarantees
linear matching time. The problem is that these en-
gines do not support advanced regular expression fea-
tures, such as look-ahead or back-references. Davis et
al. [11] advocate for a hybrid solution that only calls
the backtracking engine when such advanced features are
used, and to use a linear time algorithm in all other cases.
This is an elegant solution that is already adopted by lan-
guages like Rust’. However, it would not completely
solve the problem, since some regular expressions with

“https://github.com/rust-lang/regex

12

advanced features may still contain ReDoS vulnerabil-
ities. For instance, during our vulnerability study, we
found the following regular expression:

/(7=.%\bAndroid\b) (7=.*\bMobile\b)/i

This expression from the ismobilejs module contains
both lookahead and has super-linear complexity in a
backtracking engine.

We also recommend that Node.js augments its regu-
lar expression APIs with an additional, optional time-
out parameter. Node.js will stop any matching of regular
expressions that takes longer than the specified timeout.
This solution is far from perfect, but it is relatively easy
to implement and adopt, has been successfully deployed
in other programming languages [25], and may also be
feasible for Node.js [14].

Additionally, we advocate that our work should be
used as a roadmap for penetration testing sessions per-
formed on Node.js websites. First, the tester audits the
list of package dependencies, identifies any known Re-
DoS vulnerability in these packages or analyzes all the
contained regular expressions. Second, the tester creates
payloads for all the vulnerable regular expressions iden-
tified in the first step. Third, the tester tries to deliver
these payloads using standard HTTP requests.

Finally, better tools and techniques should be created
to help developers reason about ReDoS vulnerabilities in
server-side JavaScript. Both static and dynamic analysis
tools can aid in understanding the complexity of regular
expressions and their performance. A good starting point
could be porting existing solutions that were created for
other languages, e.g. [43].

5.3 Fingerprinting Web Servers

Part of our methodology could be used to fingerprint web
servers to predict some of the third-party modules used
by a website. This ability can be useful for an attacker in
at least two ways. First, the attacker may try to temper
with the development process of that module by intro-
ducing backdoors that can then be exploited in the live
website. Given that npm modules often depend on sev-
eral others, the vulnerability can even be hidden in a
dependent module. Second, the attacker may exploit a
more serious vulnerability present in the same module.
To show how this scenario may happen, consider the
dns-sync vulnerability, identified in Section 4.1. The
vulnerable function suffers both from a ReDoS attack
and a command injection attack [37]. An attacker may
use the ReDoS attack as a hard-to-detect way to scan
which sites use the vulnerable module and then attack
these sites with a command injection.

6 Related Work

Server-side JavaScript Ojamaa and Diitina [27] dis-
cuss the security of Node.js and identify algorithmic
complexity attacks as one of the main threats. Davis et
al. [11] show that ReDoS vulnerabilities are present in
popular modules. We take these observations further and
show that ReDoS affects real websites. Other studies on
Node.js explore command injection vulnerabilities [37]
and configuration errors [32]. Several techniques han-
dle more general, Node.js-related issues: static analysis
that handles Node.js-specific events [26], fuzzing to un-
cover concurrency-related bugs [12], auto-sanitization to
protect against injections [37], and work on understand-
ing event interactions between server-side and client-side
code [1]. To the best of our knowledge, our work is the
first to analyze Node.js security problems in real-world
websites and to demonstrate how an attacker may exploit
vulnerabilities in npm modules to attack websites.

Analysis of ReDoS Vulnerabilities Prior work ana-
lyzes the worst case matching time of regular expressions
[6, 41, 21, 2]. Most of this work assumes backtracking-
style matching and analyzes regular expressions in iso-
lation, ignoring whether attacker-controlled inputs reach
it. Recent work by Wiistholz et al. [43] considers this
aspect. They combine static analysis and exploit genera-
tion to find 41 vulnerabilities in Java software. Our work
differs in three ways: (i) we analyze JavaScript ReDoS,
which is more serious than Java ReDoS, (ii) we detect
vulnerabilities in real-world websites whose source code
is not available for analysis, and (iii) we uncover ReDoS
vulnerabilities containing advanced features, e.g. looka-
head, that are not supported by any of the previous work.
A study performed concurrently with ours considers Re-
DoS vulnerabilities in the npm ecosystem and confirms
that ReDoS is a serious threat for JavaScript code [13].
Regular Expressions Regular expressions are often
used for sanitizers and XSS filters. Bates et al. [S] show
that XSS filters are often slow, incorrect, and sometimes
even introduce new vulnerabilities. Hooimeijer et al. [18]
show that supposedly equivalent implementations of san-
itizers differ. A study by Chapman et al. [9] shows that
developers have difficulties in composing and reading
regular expressions. We are the first to analyze the im-
pact of this problem on real-world websites. To avoid
mistakes in regular expressions, developers may synthe-
size instead of writing them [3, 4].

Algorithmic Complexity Attacks Differences be-
tween average and worst case performance are the ba-
sis of algorithmic complexity attacks. Crosby and Wal-
lach [10] analyze vulnerabilities due to the performance
of hash tables and binary trees, while Dietrich et al. [15]
study serialization-related attacks. Wise [7], Slow-
Fuzz [28], and PerfSyn [39] generate inputs to trigger

13

unexpectedly high complexity.

Resource Exhaustion Attacks SAFER [8] statically
detects CPU and stack exhaustion vulnerabilities involv-
ing recursive calls and loops. Huang et al. [19] study
blocking operations in the Android system that can force
the OS to reboot when called multiple times. Shan et
al. [35] consider attacks on n-tier web applications and
model them using a queueing network model.

Testing Regular Expressions The problem of gener-
ating inputs for regular expressions is also investigated
from a software testing perspective [40], [24], [22], [34].
In contrast to our work, these techniques aim at maxi-
mizing coverage or finding bugs in the implementation.
Performance of JavaScript ReDoS vulnerabilities are
a kind of performance problem. Such problems are worth
fixing independent of their exploitability in a denial of
service attack, e.g., to prevent websites from being per-
ceived as slow and unresponsive. Existing work has stud-
ied JavaScript performance issues [33] and proposed pro-
filing techniques to identify them [30, 17, 20]. Studying
the exploitability of other performance issues beyond Re-
DoS is a promising direction for future work.

Studies of the Web Lauinger et al. [23] study the use
of client-side JavaScript libraries that are outdated and
have known vulnerabilities. In contrast to their setup,
we focus on ReDoS issues, on server-side code, and on
code that is vulnerable despite being up-to-date. An-
other study looks into attack vectors and defenses related
to the postMessage API in HTMLS5 [36], showing that
attackers may use it to circumvent the same-origin pol-
icy. A study by Richards et al. [31] analyzes the use of
JavaScript’s eval function, which is prone to code injec-
tions. All the above studies are orthogonal to our work.
To the best of our knowledge, we are the first to focus on
server-side JavaScript and on ReDoS vulnerabilities.

7 Conclusions

This paper studies ReDoS vulnerabilities in JavaScript-
based web servers and shows that they are an important
problem that affects various popular websites. We ex-
ploit eight vulnerabilities that affect at least 339 popular
websites. We show that an attacker could block these
vulnerable sites for several seconds and sometimes even
much longer. More generally, our results are a call-to-
arms to address the current lack of tools for analyzing
ReDoS vulnerabilities in JavaScript.

Acknowledgments

This work was supported by the German Federal Ministry of
Education and Research and by the Hessian Ministry of Sci-
ence and the Arts within CRISP, by the German Research
Foundation within the ConcSys and Perf4JS projects, and by
the Hessian LOEWE initiative within the Software-Factory 4.0
project.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

Saba Alimadadi, Ali Mesbah, and Karthik Pattabi-
raman. Understanding asynchronous interactions
in full-stack JavaScript. In Proceedings of the 38th
International Conference on Software Engineering,
ICSE, 2016.

Arturs Backurs and Piotr Indyk. Which regular
expression patterns are hard to match? In /[EEE
57th Annual Symposium on Foundations of Com-
puter Science, FOCS, 2016.

Alberto Bartoli, Giorgio Davanzo, Andrea De
Lorenzo, Eric Medvet, and Enrico Sorio. Auto-
matic synthesis of regular expressions from exam-
ples. IEEE Computer, 47(12):72-80, 2014.

Alberto Bartoli, Andrea De Lorenzo, Eric Medvet,
and Fabiano Tarlao. Can a machine replace hu-
mans in building regular expressions? A case study.
IEEE Intelligent Systems, 2016.

Daniel Bates, Adam Barth, and Collin Jackson.
Regular expressions considered harmful in client-
side XSS filters. In Proceedings of the 19th Interna-
tional Conference on World Wide Web, WWW 2010,
Raleigh, North Carolina, USA, April 26-30, 2010,
pages 91-100, 2010.

Martin Berglund, Frank Drewes, and Brink van der
Merwe. Analyzing catastrophic backtracking be-
havior in practical regular expression matching. In
Proceedings 14th International Conference on Au-
tomata and Formal Languages, AFL 2014, Szeged,
Hungary, May 27-29, 2014., pages 109-123, 2014.

Jacob Burnim, Sudeep Juvekar, and Koushik Sen.
WISE: Automated test generation for worst-case
complexity. In ICSE, pages 463-473. IEEE, 2009.

Richard M. Chang, Guofei Jiang, Franjo Ivancic,
Sriram Sankaranarayanan, and Vitaly Shmatikov.
Inputs of coma: Static detection of denial-of-
service vulnerabilities. In Proceedings of the 22nd
IEEE Computer Security Foundations Symposium,
CSF 2009, Port Jefferson, New York, USA, July 8-
10, 2009, pages 186—199, 2009.

Carl Chapman and Kathryn T. Stolee. Exploring
regular expression usage and context in Python. In
Proceedings of the 25th International Symposium
on Software Testing and Analysis, ISSTA, 2016.

Scott A. Crosby and Dan S. Wallach. Denial of
service via algorithmic complexity attacks. In Pro-
ceedings of the 12th USENIX Security Symposium,
2003.

14

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

James Davis, Gregor Kildow, and Dongyoon Lee.
The case of the poisoned event handler: Weak-
nesses in the Node.js event-driven architecture. In
Proceedings of the 10th European Workshop on
Systems Security, EUROSEC, 2017.

James Davis, Arun Thekumparampil, and Dongy-
oon Lee. Node.fz: Fuzzing the server-side event-
driven architecture. In Proceedings of the Twelfth
European Conference on Computer Systems, Eu-
roSys 2017, Belgrade, Serbia, April 23-26, 2017,
pages 145-160, 2017.

James C. Davis, Christy A. Coghlan, Francisco Ser-
vant, and Dongyoon Lee. The impact of regular
expression denial of service (ReDoS) in practice:
an empirical study at the ecosystem scale. In FSE,
2018.

James C. Davis, Eric R. Williamson, and Dongyoon
Lee. A sense of time for JavaScript and Node.js. In
USENIX Security, 2018.

Jens Dietrich, Kamil Jezek, Shawn Rasheed, Am-
jed Tahir, and Alex Potanin. Evil pickles: DoS at-
tacks based on object-graph engineering. In 31st
European Conference on Object-Oriented Pro-
gramming, ECOOP, 2017.

Andy Georges, Dries Buytaert, and Lieven Eeck-
hout. Statistically rigorous Java performance evalu-
ation. In Conference on Object-Oriented Program-
ming, Systems, Languages, and Application (OOP-
SLA), pages 57-76. ACM, 2007.

Liang Gong, Michael Pradel, and Koushik Sen. JIT-
Prof: Pinpointing JIT-unfriendly JavaScript code.
In European Software Engineering Conference and
Symposium on the Foundations of Software Engi-
neering (ESEC/FSE), pages 357-368, 2015.

Pieter Hooimeijer, Benjamin Livshits, David Mol-
nar, Prateek Saxena, and Margus Veanes. Fast and
precise sanitizer analysis with BEK. In USENIX
Security Symposium, pages 1-16, August 2011.

Heqing Huang, Sencun Zhu, Kai Chen, and Peng
Liu. From system services freezing to system
server shutdown in Android: All you need is a
loop in an app. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communi-
cations Security, Denver, CO, USA, October 12-6,
2015, pages 1236-1247, 2015.

Simon Holm Jensen, Manu Sridharan, Koushik
Sen, and Satish Chandra. Memlnsight: platform-
independent memory debugging for JavaScript. In

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE
2015, Bergamo, Italy, August 30 - September 4,
2015, pages 345-356, 2015.

James Kirrage, Asiri Rathnayake, and Hayo Thi-
elecke. Static analysis for regular expression
denial-of-service attacks. In Network and System
Security - 7th International Conference, NSS 2013,
Madrid, Spain, June 3-4, 2013. Proceedings, pages
135-148, 2013.

Eric Larson and Anna Kirk. Generating evil test
strings for regular expressions. In IEEE Interna-
tional Conference on Software Testing, Verification
and Validation, ICST 2016, 2016.

Tobias Lauinger, Abdelberi Chaabane, Sajjad Ar-
shad, William Robertson, Christo Wilson, and En-
gin Kirda. Thou shalt not depend on me: Analysing

the use of outdated JavaScript libraries on the web.
In NDSS, 2017.

Nuo Li, Tao Xie, Nikolai Tillmann, Jonathan
de Halleux, and Wolfram Schulte. Reggae: Auto-
mated test generation for programs using complex
regular expressions. In ASE 2009, 24th IEEE/ACM
International Conference on Automated Software
Engineering, 2009.

Alex Mackey, William Stewart Tulloch, and Ma-
hesh Krishnan. Introducing. NET 4.5. Apress,
2012.

Magnus Madsen, Frank Tip, and Ondrej Lhotik.
Static analysis of event-driven Node.js JavaScript
applications. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and
Applications, OOPSLA, 2015.

Andres Ojamaa and Karl Diiiina. Assessing the se-
curity of Node.js platform. In International Con-
ference for Internet Technology and Secured Trans-
actions, 2012.

Theofilos Petsios, Jason Zhao, Angelos D.
Keromytis, and Suman Jana. Slowfuzz: Automated
domain-independent detection of algorithmic com-
plexity vulnerabilities. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pages 2155—
2168, 2017.

15

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

Michael Pradel, Markus Huggler, and Thomas R.
Gross. Performance regression testing of concur-
rent classes. In International Symposium on Soft-
ware Testing and Analysis (ISSTA), pages 13-25,
2014.

Michael Pradel, Parker Schuh, George Necula, and
Koushik Sen. EventBreak: Analyzing the respon-
siveness of user interfaces through performance-
guided test generation. In Conference on Object-
Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 33—47, 2014.

Gregor Richards, Christian Hammer, Brian Burg,
and Jan Vitek. The eval that men do - a large-scale
study of the use of eval in JavaScript applications.
In European Conference on Object-Oriented Pro-
gramming (ECOOP), pages 52-78, 2011.

Mohammed Sayagh, Noureddine Kerzazi, and
Bram Adams. On cross-stack configuration errors.
In Proceedings of the 39th International Confer-
ence on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017, pages 255-265,
2017.

Marija Selakovic and Michael Pradel. Performance
issues and optimizations in JavaScript: An empiri-
cal study. In International Conference on Software
Engineering (ICSE), pages 61-72, 2016.

Muzammil Shahbaz, Phil McMinn, and Mark
Stevenson. Automated discovery of valid test
strings from the web using dynamic regular expres-
sions collation and natural language processing. In
12th International Conference on Quality Software,
2012.

Huasong Shan, Qingyang Wang, and Calton Pu.
Tail attacks on web applications. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas,
TX, USA, October 30 - November 03, 2017, pages
1725-1739, 2017.

Sooel Son and Vitaly Shmatikov. The post-
man always rings twice: Attacking and defending
postmessage in HTMLS websites. In NDSS, 2013.

Cristian-Alexandru Staicu, Michael Pradel, and
Ben Livshits. Understanding and automatically
preventing injection attacks on Node.js. In NDSS,
2018.

Ken Thompson. Programming techniques: Regular
expression search algorithm. Communications of
the ACM, 11(6):419-422, 1968.

[39]

[40]

[41]

[42]

[43]

Luca Della Toffola, Michael Pradel, and Thomas R.
Gross. Synthesizing programs that expose perfor-
mance bottlenecks. In CGO, 2018.

Margus Veanes, Peli de Halleux, and Nikolai Till-
mann. Rex: Symbolic regular expression ex-
plorer. In Third International Conference on Soft-
ware Testing, Verification and Validation, ICST
2010, 2010.

Nicolaas Weideman, Brink van der Merwe, Martin
Berglund, and Bruce Watson. Analyzing match-
ing time behavior of backtracking regular expres-
sion matchers by using ambiguity of NFA. In Im-
plementation and Application of Automata - 21st
International Conference, CIAA, 2016.

Paul Wilton. Beginning JavaScript. John Wiley &
Sons, 2004.

Valentin Wiistholz, Oswaldo Olivo, Marijn J. H.
Heule, and Isil Dillig. Static detection of DoS
vulnerabilities in programs that use regular expres-
sions. In Tools and Algorithms for the Construction
and Analysis of Systems - 23rd International Con-
ference, TACAS, Held as Part of the European Joint
Conferences on Theory and Practice of Software,
ETAPS, 2017.

16

