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Abstract. Reverse engineering is usually the stepping stone of a variety of at-
tacks aiming at identifying sensitive information (keys, credentials, data, algo-
rithms) or vulnerabilities and flaws for broader exploitation. Software applica-
tions are usually deployed as identical binary code installed on millions of com-
puters, enabling an adversary to develop a generic reverse-engineering strategy
that, if working on one code instance, could be applied to crack all the other in-
stances. A solution to mitigate this problem is represented by Software Diversity,
which aims at creating several structurally different (but functionally equivalent)
binary code versions out of the same source code, so that even if a successful
attack can be elaborated for one version, it should not work on a diversified ver-
sion. In this paper, we address the problem of maximizing software diversity from
a search-based optimization point of view. The program to protect is subject to a
catalogue of transformations to generate many candidate versions. The problem
of selecting the subset of most diversified versions to be deployed is formulated
as an optimisation problem, that we tackle with different search heuristics. We
show the applicability of this approach on some popular Android apps.
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1 Introduction

The latest BSA Global Software Piracy Study4 states that 39% of software installed
on computers around the world in 2015 is not properly licensed, amounting to $52
billion in losses due to unlicensed software; the same study shows that malware often
spreads through unlicensed software distributed on the internet, causing a wider number
of security attacks and consequent revenue losses. In particular, the 98% of mobile apps
lack binary code protection and they can be easily reverse engineered and modified5.
Software vendors need effective solutions to contrast Man-At-The-End attacks [11],

4 BSA Global Software Piracy Survey: http://globalstudy.bsa.org/2016/
5 State of Application Security: https://www.arxan.com/resources/state-of-application-security/
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where the end user is the attacker, owning the device running the software, and able to
reverse engineer and modify the code, in order to use and spread unlicensed copies.

Obfuscation is a common protection against reverse engineering, and it consists of
semantic-preserving code transformations that make a program more difficult to under-
stand by changing its structure, while keeping the original functionalities. A multitude
of techniques to perform code obfuscation have been proposed [8]. From a security
viewpoint, obfuscation can help software diversity so that an attacker can find more
difficult to map critical code in one release to another one.

Diversified updates is a software protection technique that aims at mitigating the risk
of such attacks. When a program is frequently updated with a different version, then an
available crack can be used for a limited amount of time, until a diversified update is
pushed. The deployed versions should be pairwise different from the ones previously
deployed, such that an attack available for one version cannot be easily replayed on
another version.

The open problem we want to tackle is how to determine whether the subsequent
diversified version maximizes its own diversity with respect to the previous versions,
mitigating the security risks by maximizing diversity.

In this paper, we propose a novel approach to generate diversified versions of the
program to protect. These can be used in an update strategy aimed at limiting the time
available to an attacker to be successful. Given the availability of a catalogue of trans-
formations, first of all we propose a novel strategy to filter those that are not effec-
tive in achieving diversification. These transformations that remain after filtering are
combined in all the possible permutations, to form the complete set of the candidate
versions. Then, our second novel contribution is to formulate the identification of diver-
sified versions as a clustering problem, to be addressed with search based optimization
heuristics.

The paper is structured as follows. Section 2 presents our approach to generate
diversified versions for updates. Then, in Section 3 we introduce our setting for the
empirical validation, while Section 4 presents and comments the experimental results.
Section 5 compares our approach to the related literature while Section 6 concludes the
paper.

2 Automatic Generation of Maximally Diversified Versions

Software diversity aims at distribution of unique binaries, so that it become much less
likely that a single attack will affect large numbers of targets, and as a consequence
the impact of reverse engineering attacks will be reduced. The distribution of unique
binaries also has the effect that attackers cannot simply analyse their own software
copies to locate critical code in certain binary code sections, because such code might
have been relocated in different sections due to binary code diversity.

2.1 Approach Overview

Our code protection technique based on diversified updates, consists in generating sev-
eral structurally different (but functionally equivalent) binary code versions out of the
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same source code such that they maximise their pairwise diversity. This protection strat-
egy aims at reducing the exploitation of reverse engineering attacks: a successful attack
on one code instance cannot be easily replayed on a diversified update.

Our approach is composed of the subsequent steps:

– A catalogue of code transformations are applied separately to the program to pro-
tect, so as to generate several distinct versions of the initial program;

– These versions are analysed, to filter out transformations that do not work well on
the current program;

– The remaining transformations are combined together (in all the possible combina-
tions) to generate many versions candidate for updates;

– We measure the similarity among all the pairs of versions;
– Candidate versions are subject to clustering, to group in the same cluster all the

versions that are very similar to one another;
– We select one version from each distinct cluster. Since the version selected in this

way are different from one another, they can be used to support diversified updates.

2.2 Program Transformations

Code obfuscation aims at transforming a program such that it becomes much harder to
understand and reverse engineer, while its observable behaviour remains the same.

Code obfuscation represents an available approach to generate versions with a high
level of diversity, with the added value of thwarting code comprehension.

We adopted Zelix KlassMaster6 a commercial obfuscation tool for Java and An-
droid. Zelix KlassMaster provides several activation points for obfuscating Java classes.
It also provides a way to prevent methods, classes and packages from being obfuscated,
or to identify the portion of code to protect with obfuscation. The tool can be stream-
lined by the use of scripts, which make it very easy to automate.

Zelix KlassMaster supports 15 distinct configuration parameters to control which
transformations are activated and how they are configured. Among them, 8 parameters
supports binary values, other 3 parameters have three possible values each, and the
other two parameters allow four values each. This means that, potentially, a total of 28

* 33 * 42 = 110,592 distinct obfuscated versions can be generated using this tool, just
by resorting to its different configurations. Moreover, the number of versions can be
further increased by selecting the subset of methods and/or classes on which to apply
the obfuscation (instead of the whole application), but this dimension is not investigated
in this study.

2.3 Similarity Metric

To quantify the similarity between two versions, we rely on the Normalized Compres-
sion Distance (NCD [14])7. The formula used to compute similarity is shown in Equa-

6 http://www.zelix.com/klassmaster/
7 Our approach is general, and it is compatible with any other pairwise similarity metric.
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tion 1, where NCD is the Normalized Compression Distance and Crzip
8 is the size of

the compressed text.

S(v1, v2) = 1−NCD(v1, v2) = 1−Crzip(v1v2)−min(Crzip(v1), Crzip(v2))

max(Crzip(v1), Crzip(v2))
(1)

This metric is based on rzip, a lossless compression algorithm, to estimate the
amount of common information shared among two documents. In fact, size reduction
is achieved by removing repeated sub-sequences of bits.

If two versions v1 and v2 are very similar, the compression of the concatenation v1v2
will not bring additional information and it will result in a size closer to the smaller
of the two versions. Thus, the NCD distance will tend to zero and similarity (that is
1−NCD) will be close to 1.

Conversely, when v1 and v2 are different the size of the compression of the concate-
nation would tend to reach the sum of the sizes of v1 and v2, the distance will tend to
one and similarity will tend to 0.

We base similarity computation on the textual representation of the Java code, ob-
tained by executing the javap disassembler. We drop irrelevant information for disas-
sembled code, such as constant headers, compilation info, comments, white lines and
we replace the identifiers with labels. Eventually, we compute the similarity as specified
in Equation 1 using rzip as compression algorithm. We used NCD metric implementa-
tion with rzip algorithm because its history buffer is wider than gzip, which is limited
to 32 Kbytes [5].

2.4 Filtering Twin Obfuscations

Many versions can be generated by blindly combining all the available code obfuscation
transformations. However, some of these distinct transformations in the catalogue could
generate programs that are not so different, so they should be detected and excluded.

Since transformations can be combined, let’s call the transformations in the cata-
logue the atomic obfuscations. If we consider m atomic obfuscations, we can elaborate
n = 2m distinct combinations of atomic obfuscations to deliver n candidate versions
for updates. Since the number of versions n is exponential in the number of atomic
obfuscations m, we need to carefully select the m atomic obfuscation to keep, i.e. only
the relevant ones.

When two atomic obfuscations are just small variations of the same transformation
algorithm, or when they are two different algorithms that emit very similar obfuscated
code (for example an atomic obfuscation only targeting and rewriting exception han-
dling code may have little effect on an original application with few exception code
blocks), it does not make sense to consider both of them for diversity. Including one
of the two similar variants is enough, and the other can be considered redundant: we
propose to apply a preliminary filtering to drop some of the m atomic obfuscations
from the search space, when they are not promising as a diversifier component for the
application. When two atomic obfuscations a and b are very similar to each other, we
call a and b twin obfuscations.

8 https://rzip.samba.org/
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Our approach to detect twin obfuscations and filter them out is as follows:

– We consider only the atomic obfuscations, i.e. each version is obtained by apply-
ing only an atomic obfuscation from the catalogue: in this way, we only obtain m
versions;

– We compute the pairwise similarity of these m versions. Similarity values are stored
in a similarity matrix of size mxm. A value in the similarity matrix in the i-th row
and j-th column represents the similarity between version i and version j;
For each atomic obfuscation a, the a-th row in the similarity matrix represents the
signature vector Xa. The signature vector contains the similarity values between
a and all the other m − 1 obfuscated versions. The b-th element of this vector,
namely Xa(b), represents the similarity between code obfuscated with a and code
obfuscated with b.

– Two atomic obfuscations are twins when their signature vectors are very similar,
i.e. the two transformations generate code with the same values of similarity when
compared with the same alternative versions. We compute the twin value ta,b be-
tween atomic obfuscation a and b as the square of the distance between their signa-
ture vectors Xa and Xb with the sum of squared residuals:

ta,b =
∑

i=1..n,i6=a,i6=b

(Xa(i)−Xb(i))
2

– When all the pairwise twin values tx,y are available (one for each obfuscation pair
(x, y)), we sort them in ascending order to detect the most likely twins;

– We exclude the twins by excluding the atomic obfuscations with lowest twin values.
Let us say that ta,b is the smallest value among all the twin values (first value in
the sorted set). At this stage, we can exclude either a or b. To decide which one to
exclude, we consider the next twin value tx,y (in the sorted twin values in ascending
order). There could be three cases:
• (x = a) ∨ (y = a): we make the decision to exclude a;
• (x = b) ∨ (y = b): we make the decision to exclude b;
• (x 6= a) ∧ (y 6= a) ∧ (x 6= b) ∧ (y 6= b): we make no decision at this point

and we iterate. We consider the next twin value tw,z in the sorted list, and we
compare a and b with w and z.

There are multiple strategies to decide when to stop excluding twin obfuscations.
A possible strategy is to set a threshold and exclude atomic obfuscations whose twin
values are below the threshold. Alternatively, we can set a target size mmax for the
number of atomic obfuscations and stop filtering when this target is met, i.e. when
m ≤ mmax.

In this work, we opted for the second strategy. We set the upper limit to the number
of versions nmax to 500. Therefore, the number of atomic obfuscations m is approxi-
mately9 9 (29 = 512). Eventually, the number of pairwise similarity values k to measure
is 130,816, in fact the distinct pairs of n versions are k = n(n− 1)/2.

9 The number of atomic obfuscations m can be actually larger, because some combinations
cause and error in the obfuscation tool, or simply do not work. Thus, more atomic obfuscations
are required to meet the target number of versions n.
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Anyway, this filtering strategy is required to keep the number of versions to generate
and the number similarity values to measure limited to a tractable size. Anyway, the
exact solution to the clustering problem is still intractable (see Section 2.5).

2.5 Clustering Based on Similarity

C1
C2

C3

Fig. 1. Diversified updates based on clustering for similarity.

We formulate the problem of computing the set of maximally dissimilar versions as
a clustering problem, as shown in the example in Figure 1. Clustering is used to partition
the available versions into groups that contain very similar versions, three groups in the
example. Versions from the same cluster (e.g., in C1) are very similar to each other,
so they cannot be used in the same update plan. The final set of versions to be used as
updates is selected by taking just one element from each high-similarity group, they are
the black elements in Figure 1. In this way, very similar versions are never used in the
update plan. Clustering is driven by the similarity metric defined in Equation 1.

Given a partition of all the available versions into similarity clusters, we define the
intra-similarity Ai of the cluster i as the average similarity of all the pairs of elements
in the cluster:

Ai =

∑
v1,v2

S(v1, v2)

|Ci|(|Ci| − 1)/2
, ∀v1, v2 ∈ Ci (2)

We define the inter-similarity between two clusters Ci and Cj as the average simi-
larity of the versions from the two clusters:

Ei,j =

∑
v1,v2

S(v1, v2)

|Ci| |Cj |
v1 ∈ Ci, v2 ∈ Cj (3)

Considering that our objective is to search for a clustering configuration whose clus-
ters contains elements as similar as possible (high intra-similarity) and low similarity
between elements from different clusters (low inter-similarity), we define the overall
similarity quality among the clusters as the average intra-similarity minus the average
of all the inter-similarity:

SQ =
1

nc

nc∑
i=1

Ai −
1

nc(nc−1)
2

k∑
i,j=1

Ei,j (4)

where nc is the number of clusters in the partition to evaluate.
At this stage, the software diversity problem can be expressed as a search problem,

aiming at finding the clustering partition that maximize the similarity quality SQ.
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2.6 Search Strategies

The analytic solution of clustering is intractable [24], because the number of poten-
tial solutions to the clustering problem is exponential in the number of elements to
cluster. Considering that the number of candidate versions for update are hundreds of
thousands, we adopt search heuristics. They are Greedy agglomerative clustering, Hill
climbing and Single objective genetic algorithm.

Greedy agglomerative clustering: Agglomerative clustering is a greedy algorithm
to find a candidate good partition in the search space. This algorithm starts from an
initial configuration, where each element is assigned to a different cluster. At each step,
inter-/intra-similarity are computed and the two most similar clusters (those with the
highest inter-similarity) are merged to form a single cluster. This process is iterated
and, at each step, the total number of cluster decreases by 1. The iteration terminates
when all the clusters are merged in a single final big cluster.

During this process, we record the similarity quality SQ of all the visited configu-
rations, and the one with the highest value represents the final optimal solution.

This algorithm produces candidate clustering configurations with decreasing num-
ber of clusters, in the interval [0, n]. However, solutions with too few clusters are not
relevant to solve our problem, even if their similarity quality SQ would be very high,
because not enough versions would be available for updates. Thus, we consider inter-
esting only those clustering configurations with a number of clusters above a threshold,
that we set to 10.

Hill climbing: Hill-climbing starts from an initial random configuration of clus-
tering. At each step, neighbour solutions are considered and one of them is randomly
chosen among those that improve the fitness function SQ of the current clustering con-
figuration. This process is iterated until no better solution can be found in the neigh-
bourhood. However, given the huge space of the neighbour configurations, only a sub-
set of it is probed, and this subset is selected choosing 100 configuration with uniform
probability among all the neighbour cases.

Neighbour solutions consist of all the clustering configurations that can be obtained
from the current clustering configuration with an atomic change. An atomic change
consists of applying one of these mutation operators:

– (i) Moving one element from a cluster to another cluster; and
– (ii) Removing one element from a cluster and create a brand new cluster with just

this element;

The search stops when no neighbour can be found that improve the fitness function or
the search budget is consumed.

Single objective genetic algorithm: Genetic algorithms are a family of optimiza-
tion heuristics inspired by biological evolution. A population of solutions is evolved
by giving higher probability of recombining to solutions with higher values of a fitness
function. The aim is to push the population to evolve and explore the part of the solution
space with better and better values of fitness function. In particular, we adopt a steady
state genetic algorithm. In this variant, offspring replace the parents at each iteration
regardless of their fitness function [2].
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In our case, the population of solutions is represented by clustering configurations.
For a clustering configuration, the fitness function is represented by the similarity qual-
ity SQ.

The initial population is represented by 100 versions, including random clustering
configuration. At each evolution iteration, we select 70% of the population, using linear
ranking selection with a selection pressure sp of 1.5. The selected versions are paired
randomly. Each of these pairs of solutions undergoes crossover with rate of 0.5.

Crossover, consists in elaborating two brand new solutions (offspring), based on
the two selected solutions (parents). Let’s assume that the two parents, namely clus-
tering C1 and clustering C2, contain respectively n1 and n2 clusters. Two cross points
r1 and r2 are randomly selected, such that r1 < n1 and r2 < n2. Then, r1 clusters
are randomly selected from C1 and r2 clusters from C2 to form the new C3 offspring
configuration. The remaining n1 − r1 clusters from C1 and n2 − r2 clusters form C2

are used to create the new C4 offspring configuration.
At this stage C3 and C4 could be invalid clustering configurations, because they

could contain repeated elements or they could miss elements, so they should be fixed.
In case an element is repeated, one instance of the repeated element is randomly selected
and removed. Conversely, if an element is missing, it is added to a random cluster.

In steady state GA, when crossover takes place, only offspring survives for the next
generation while parents do not [23]. Otherwise, if there is no crossover, the parents
survive for the next generation. The offspring is subject to mutation with a rate of 0.03.
Mutation operators are the same operators used to visit the neighbourhood in hill climb-
ing search strategy.

The search stops when the search budget is consumed or when a plateau is reached,
i.e. no improvement in the population after 100 iterations.

3 Experimental Settings

3.1 Research Questions and Variables Selection

Our experimental investigation aims at answering the following research questions:

– RQ0: What is the interval of validity of the normalized compression distance?
– RQ1: What is the distribution of Similarity among all the version pairs?
– RQ2: Is filtering effective in discarding useless obfuscations?
– RQ3: How many diversified versions can be identified by the search heuristics?

RQ0 is a sanity check, to verify that we are using the metric in the correct interval
of validity. RQ1 aims at studying how values of Similarity are spread. Then, RQ2 is
intended to validate the filtering procedure that we proposed. We adopted a filtering
procedure to control the (exponential) number of versions to consider, by excluding
those obfuscations that are not effective in generating diversified versions. Eventually,
the last research question RQ3 directly compares the search strategies, to identify the
most effective to solve the software diversity problem.

To answer these research questions, we measure and collect the following variables:
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– Similarity: the similarity among version pairs based on the compression size (as
defined in Section 2.3);

– Similarity Quality: the fitness function (as defined in Section 2.5) to compare clus-
tering configurations; and

– Number of Clusters: how many clusters are in a clustering configuration. This num-
ber corresponds to the number of diversified versions that can be used as diversified
updates.

3.2 Experimental Procedure

The empirical investigation is conducted according to the following experimental pro-
cedure:

– The original version of an app (as it is distributed by the apps market) is subject
to all the atomic obfuscation transformations available in Zelix KlassMaster (no
combinations of obfuscations);

– Twin obfuscations are then detected and excluded for this particular app;
– The remaining atomic obfuscation transformations are applied to the app, in all the

possible combinations, resulting in the versions candidate for diversified updates;
– Pairwise similarity is computed among all the pairs of these versions;
– The search heuristics (agglomerative clustering, hill climbing and genetic algo-

rithm) are applied to compute optimal clustering based on similarity.

Agglomerative clustering is a deterministic algorithm and it requires a fixed number
of fitness function evaluations, that is equal to the number of versions to group into
the clusters. Conversely, hill climbing and genetic algorithm are non-deterministic, so
we set a search budget: in particular, they are stopped after 100.000 fitness function
evaluations or when a plateau (a local optimum) is detected.

3.3 Subject Apps

We apply the experimental procedure on several real world Android apps. We select 10
from the most popular apps as ranked in the official Android store, namely Google Play
(data collected in 2013). They spread on different categories (utility, social network,
games, voip, internet browser) and their popularity goes from half a million to 500
millions of downloads. Their size is between 100kB to almost 10MB. The smallest
apps contain about 200 classes, while the largest apps contain about 10,000 classes.

Despite we selected popular apps from different categories, they could be prone to
the app sampling problem [22]. This represents a threat to the external validity of our
results. Only replications of this study with more apps would confirm or disprove our
findings.

4 Results

4.1 RQ0: Validity of the Normalized Compression Distance

As shown by Cebrián et al. [5], metrics based on the Normalized Compression Distance
provide reliable results in an limited interval. In particular, NCD metrics give unreliable
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results when size of the file to compress is lager than the sliding window used by the
compression algorithm. For example, Cebrián et al. reports that gzip can be used for
files up to 32Kb.

Here we adopt a validation procedure similar to the one used by Cebrián et al., i.e.
we study the idempotency property of NCD based on rzip that requires NCD(x, x) =
0. We take a large text file and we truncate it to have a shorter file x. Then we plot
NCD(x, x) for increasing size of x, from 0 to 1GB with steps of 16MB.
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Fig. 2. Interval of validity of the Normalized Compression Distance.

Results are shown in Figure 2, left-hand side plot. The most interesting region is
highlighted in yellow and detailed in the right-hand side plot. The idempotency property
(zero distance between x and x) is satisfied when the size of files is lower than 448MB.
NCD values are not reliable for larger files.

For the subsequent experiments, the size of decompiled code will be lower than
20MB, so the NCD metric is used in its interval of validity.

4.2 RQ1: Distribution of Similarity

First of all, we examine the distribution of the values of similarity. Figure 3 show the
histogram of Similarity for Skype. The histogram contains all the versions, after filtering
twin obfuscations, for approximately 130,000 pairs.

As we can see, values of similarity are clustered in two groups. A first group that
contains quite dissimilar pairs is centred in 0.4, ranging mostly in the interval [0.1, 0.5].
The second group contains quite similar pairs and it is centred in 0.8. Probably, diversi-
fied updates will be selected among versions whose similarity falls in the first group.

4.3 RQ2: Effectiveness of Filtering

Table 1 shows which atomic obfuscations remain after applying filtering, more pre-
cisely, which atomic obfuscations are combined to diversify the code. A check mark
shows when an atomic obfuscation (column) passes filtering and so it is used to gen-
erated candidate diversified versions for a case study (row). The last row summarizes
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Fig. 3. Histogram of Similarity in Skype.

Table 1. Obfuscation transformations that pass filtering.

App Atomic obfuscations
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

airdroid
√ √ √ √ √ √ √ √ √ √ √ √

chrome
√ √ √ √ √ √ √ √ √ √

contacts
√ √ √ √ √ √ √ √ √ √ √

esx-filexplorer
√ √ √ √ √ √ √ √ √ √

facebook
√ √ √ √ √ √ √ √ √ √

gotetris
√ √ √ √ √ √ √ √ √ √ √

opera
√ √ √ √ √ √ √ √ √ √

skype
√ √ √ √ √ √ √ √ √ √ √

twitter
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

wordfriends
√ √ √ √ √ √ √

Tolal 10 6 9 7 7 2 7 3 3 7 8 8 8 4 8 10

on how many apps each obfuscation has been applied. As we can see, the set of obfus-
cations that passes filtering is quite different among different apps. Some obfuscations
are applied to most of the case studies (two obfuscations are applied to all 10 apps, an
obfuscation to 9 apps and four obfuscations are applied to 8 apps), while others are used
less frequently (one obfuscation is applied on 2 apps and two obfuscations are applied
to 3 apps).

This suggests that the filtering step is quite app dependent, because the effectiveness
of atomic obfuscation transformations in diversifying the code indeed depends on the
code to transform. Thus, there is no universal rule on what atomic obfuscations to adopt
in general when diversifying the code. The filtering step shall be repeated for each app
that we want to diversify.

It should be noted that this filtering step is fully automatic, based on the algorithm
presented in Section 2.4.

Due to the fact that the obfuscation tool Zelix KlassMaster (that we do not con-
trol) fails to generate certain configurations, the number N of the atomic obfuscations
required to reach nmax combinations is different for different case study apps.
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4.4 RQ3: Diversified Versions

After filtering twin obfuscations, we applied the three search heuristics to the subject
apps, to see how many diversified versions they are able to identify.

Table 2. Results of clustering.

App Agglomerative clust. Hill climbing Genetic algorithm
SQ N SQ N SQ N

airdroid 0.3533 13 0.3377 24 0.2093 35
chrome 0.4547 10 0.4148 28 0.2332 35
contacts 0.5431 15 0.4786 23 0.2447 34
esx-filexplorer 0.1637 11 0.3193 27 0.2068 107
facebook -0.5674 14 0.0017 17 -0.1105 27
gotetris 0.3927 12 0.3711 32 -0.0346 34
opera 0.2934 16 0.3854 26 0.2360 41
skype 0.4351 10 0.4287 32 0.2502 96
twitter 0.4337 13 0.4255 24 0.2562 41
wordfriends -0.5792 12 0.0011 10 -0.1991 15
Average 0.1923 13 0.3164 24 0.1292 46

Table 2 compares the results of the three search heuristics on the 10 apps, relevant
values are highlighted in boldface. We observe negative values of similarity quality
SQ when, according to Equation 4, the inter-similarity term Ei,j prevails on the intra-
similarity term Ai.

Agglomerative Clustering was able to elaborate the most diversified versions for
the majority of the cases (for 6 out of 10 apps), because the corresponding clustering
configurations score the highest values of Similarity Quality. Hill climbing elaborated
configurations that were always more diversified in the other four cases.

Considering the number of clusters, the Genetic Algorithm was able to identify the
largest set of diversified versions in almost all the apps (9 out 10 apps). In two of them,
the number of diversified versions was quite impressive (107 versions for esx-filexplorer
and 96 versions for skype) however the corresponding Similarity Quality was low, but
still comparable with the values obtained with the other two approaches. Hill Climbing
elaborated optimal configurations with many clusters for the remaining app (i.e., opera).
Eventually, the greedy algorithm elaborated large sets of diversified versions for no app.

5 Related Work

The concept of software diversity has interested researchers for many years [12], but
only recently software diversity has become practical due to cloud computing enabling
the computational power to perform massive diversification [19]. In the existing litera-
ture [13, 17, 10, 1], software diversity relied on random generation of different diversi-
fied copies, starting from the same source code. A recent survey from Larsen et al. [20]
compares the different approaches for software diversity in terms of performance and
security.
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Most of the past software diversity approaches have been based on some form of
obfuscation [7], load-time binary transformation [18], virtualization obfuscation based
on customized virtual machines [16], or operating system randomization [31]. Current
software diversity approaches exploit the intrinsic randomness of compiler optimiza-
tions, extending the initial idea of Forrest et al. [12] of compiler-guided code variance.
Other approaches rely on binary transformation based on a random seed [27], or multi-
compilers and cloud computing [13] to create a unique diverse binary version of every
program, and they apply such diversification for mobile apps [17]. The XIFER frame-
work [10] randomly diversifies Android apps at load-time by means of a binary rewriter.
However, such diversifier can be disabled or tampered with because it is running on the
Android device and because the original app is available to the attacker before it is
loaded and diversified by the XIFER framework.

A previous work by Anckaert et al. [1] applied regular compiler transformations
(e.g., optimizations) in a stochastic manner to generate diversified binary code versions,
with random seeds to vary compiler parameters. However, there is no guarantee that two
versions generated with different random seeds will not converge to “similar” code.
Anckaert et al. do not tackle the problem of measuring the diversity among the different
versions, which is necessary for performing a diversity evaluation. Coppens et al. [9]
apply binary diversification changing a random seed and they iteratively compare it with
the previous one till they get a new version different enough from the previous version;
however they search just one version, and not the best subset of versions like in our
approach. Diversity has also been applied to improve security in different research lines:
code randomization has been used to defend against code-reuse attacks [26], return-
oriented programming attacks [15], code injection attacks [29].

The novelty of our approach is that we are the first to tackle the problem of search-
ing the most diversified versions with meta-heuristics, to guarantee that the deployed
versions will be effectively different from one another, basing on the similarity metric
chosen. Similarity can be measured with source code metrics to detect plagiarism in
text and programs [14], or binary metrics in antivirus systems [30]. Other approaches
using search-based heuristics, like genetic programming, to achieve code transforma-
tion [28, 21], but with a different goal, i.e. to automatically find patches to fix bugs.
Portions of the programs are replaced by their mutated versions that convey different
semantics: mutation continues until the bugs are fixed and all test cases pass. In soft-
ware diversity instead, we do not change the semantics of the program, but only its
structure. Interesting developments can investigate the use of similarity metrics based
on clone detection [3], which detects code shared by two software versions, or software
birthmark [25], which compares intrinsic software properties rather than binary code
structure. Other works [4] [6] evaluated the code complexity introduced by different
obfuscation algorithms by using structural metrics, that should be instead kept low in
refactoring.

6 Conclusion

In this work, we tackle the problem of maximizing software diversity by searching
the best subset of diversified code versions to be deployed in parallel or within an up-
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date plan. Many candidate diversified versions are generated using combinations of
off-the-shelf obfuscation transformations, which can generate a huge number of possi-
ble versions; we proposed an algorithm to reduce the number of versions to generate, by
discarding redundant obfuscations for the particular application code, and then we use
clustering to identify the most different versions to deploy. The empirical assessment
shows that our approach works in diversifying 10 popular Android apps.

As future work, we intend to investigate alternative metrics to compute similarity in
a way that approximate more appropriately program difference from an attacker point
of view. Moreover, we intend to conduct a user study where we measure the actual
learning effect when attacking two consecutive versions. The aim of this study would
be to quantify for real the effort required to adapt an attack when receiving an update.
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