An Empirical Study of Information Flows in
Real-World JavaScript

Cristian-Alexandru Staicu’ Daniel Schoepe?

Musard Balliu3 Michael Pradel* Andrei Sabelfeld?

1TU Darmstadt
2Chalmers University of Technology
3KTH Royal Institute of Technology
4University of Stuttgart

15t of November 2019

Program Analyses of Different Complexity

// variable passwd is sensitive

var paddedPasswd = "xx" + passwd;

var gotIt = false;

var knownPasswd = null;

if (paddedPasswd === "xxacmccs2019") {

gotIt = true;

knownPasswd = passwd;
}
// function sink is insensitive
sink (gotIt);

1/19

Program Analyses of Different Complexity

// variable passwd is sensitive

var paddedPasswd = "xx" +ip i

var gotIt = false;

var knownPasswd = null;

if (paddedPasswd === "xxacmccs2@y19") {
gotIt = true;
knownPasswd = passwd;

}

// function sink is insen

tive
information flow?

1/19

Program Analyses of Different Complexity

lightweight — heavyweight

taint observable information flow
tracking tracking control

// variable passwd is sensitive

var paddedPasswd = "xx"

var gotIt = false;

var knownPasswd = null;

if (paddedPasswd === "xxacmccs2@y19") {

gotIt = true;
knownPasswd = passwd;
}
// function sink is insen
sink &g) ¢

tive
information flow?

1/19

Program Analyses of Different Complexity (2)

var paddedPasswd "xx" + passwd;

var knownPasswd
(paddedPasswd === "xxacmccs2019")

knownPasswd

sink (gotIt);

@ only track explicit flows

@ passwd =
"acmccs2019"

2/19

Program Analyses of Different Complexity (2)

var paddedPasswd = "xx" + passwd;

var knownPasswd
(paddedPasswd === "xxacmccs2019")

knownPasswd

sink (gotIt);

@ only track explicit flows

@ passwd =
"acmccs2019"

2/19

Program Analyses of Different Complexity (2)

taint
tracking
var padd asswd = "xx" + passwd;
var gotlIt = se;

var knownPasswd\= null;

if (paddedPasswd === "xxacmccs2019")

gotIt = true;
knownPasswd = passwd;

}
sink (gotIt);

{

@ only track explicit flows

@ passwd =
"acmccs2019"

2/19

Program Analyses of Different Complexity (2)

taint
tracking

var padd asswd = "xx" + passwd;
var gotlIt = se;
var knownPasswd\= null; L.
if (paddedPasswd === "xxacmccs2019") (@ Only track eXphC't flows

gotlf = 7 _

[+] =

knownPasswd passwd; paSSWd

} "acmccs2019"

sink (gotIt); . . .
! @ no security violation

2/19

Program Analyses of Different Complexity (3)

observable
tracking
var padd asswd = "xx" + passwd;
var gotlIt = se;
var knownPasswd\= null;
if (paddedPasswd === "xxacmccs2019") { k . licit fl
gotIt = true; @ track some implicit flows
knownPasswd = passwd; ° passwd _
}
sink (gotIt); "acmccs2019"

3/19

Program Analyses of Different Complexity (3)

observable
tracking

var padd "xx" + passwd;
var gotIt se;
var knownP = null;

=== "xxacmccs2019")
gotIt = true;
knownPasswd = passwd;

}

sink (gotIt);

‘o track some implicit flows

@ passwd =
"acmccs2019"

3/19

Program Analyses of Different Complexity (3)

observable
tracking

"xx" + passwd;
var gotIt
var knownP = null; . ..

——— wuxacmecs2019m) (@ track some implicit flows

gotIf = true; —
o) =
knowr%isswd = passwd; passwd

} "acmccs2019"
sink (gotIt);

@ security violation

3/19

Program Analyses of Different Complexity (3)

observable
tracking
var padd asswd = "xx" + passwd;
var gotlIt = se;
var knownPasswd\= null;
if (paddedPasswd === "xxacmccs2019") {° track some implicit ﬂOWS
gotIt = true;
knownPasswd = passwd; @ passwd = "foo"
}
sink (gotTt); @ no security violation

3/19

Program Analyses of Different Complexity (4)

information flow
control

"xx" + passwd;
var gotIt
var knownPassw null;

=== "xxacmccs2019") {@ passwd =
// violation

passwd;

gotI true;
knownPasswd
}
sink (gotIt);

"acmccs2019"

@ insert upgrade statement on
monitor violation

4/19

Program Analyses of Different Complexity (4)

information flow

control

var paddedPasswd = "xx" + passwd;
var gotIt = false;
var knownPasswd null;
upgrade (paddedPasswd, gotIt);
if (paddedPasswd === "xxacmccs2019") {@ passwd = "foo"

gotIt = true;

knownPasswd = passwd; @ insert upgrade statement on
' monitor violation
sink (gotIt);

4/19

Program Analyses of Different Complexity (4)

var padde

var gotIt =

var knownPass

upgrade (paddedPasswd, gotlIt);

if (paddedPasswd === "xxAcmccs2019")
gotIt = true;
knownPasswd =

asswd =
alse;

"xx" + passwd;

’

ra

sink (gotIt);

information flow
control

{e passwd = "foo"

@ insert upgrade statement on
monitor violation

4/19

Cost-Benefit Analysis

(T

Costs:

Benefits: .
@ runtime cost

@ more fine-grained flows
o label creep

@ more detected vulnerabilities ..
@ permissiveness

5/19

Overview

Formal
semantics

Theoretical
analysis

Research
questions

Results

Dynamic

: Metrics
analysis

Benchmarks

Empirical
study

6/19

Overview

Formal
semantics

Theoretical
analysis

Research
questions

Results

Dynamic

: Metrics
analysis

Benchmarks

Empirical
study

6/19

Microflows

Definition
A microflow is an operation, e.g., write, that causes a variable to
become sensitive.

Explicit flows

var a = b; // explicit flow from a to b

Observable implicit flow

if (a === true) {

b = 23; // observable implicit flow from a to b
} else {

b = 42; // observable implicit flow from a to b
}

Hidden implicit flow

if (a === true) {
b = 23; // observable implicit flow from a to b
} else {
// hidden implicit flow from a to b
} 7/19

Source-to-Sink Flows

Definition
A sequence of cascaded microflows between a source and a sink is
called a source-to-sink (S2S) flow.

asswd = "xx" + passwd;

null;
=== "xxacmccs2019") {

gotIf = true;
knownPygsswd = passwd;
}

sink (gotIt);

One source-to-sink flow consisting of one explicit microflow
and one observable implicit.

8/19

Label Creep

Definition

Label creep ratio (LCR) is the percentage of variables assigned a
sensitive value in their lifetime out of the total number of variables
ever assigned.

LCR — # sensitive variables/fields ever assigned
- # variables/fields ever assigned

var paddedPasswd = "xx" + passwd;
var gotIt = false;
var knownPasswd = null;

LCR =10.33

9/19

Label Creep

Definition
Label creep ratio (LCR) is the percentage of variables assigned a

sensitive value in their lifetime out of the total number of variables
ever assigned.

LCR — # sensitive variables/fields ever assigned
- # variables/fields ever assigned

var paddedPasswd = "xx" + passwd;
var gotIt = false;
var paddedPasswd = "xx" + passwd;
var gotTt = false; var knownPasswd = null;
- 4 3 p———] "
var knownPasswd = null; if (paddedPasswd = xxacmccs2019") {

gotIt = true;
}
LCR =10.33

LCR = 0.66

9/19

Inference of Upgrade Statements

Definition
Sensitive branch coverage (SBC) is the percentage of conditionals
handling sensitive information that are covered on both branches.

SBC — [{c€C where both true and false branch covered}|
- Il

10/19

Inference of Upgrade Statements

Definition

Sensitive branch coverage (SBC) is the percentage of conditionals
handling sensitive information that are covered on both branches.

SBC — [{c€C where both true and false branch covered}|

IC]
var paddedPasswd = "xx" + passwd;
var gotIt = false;
if (gotIt === false) {
console.log(23);
}
if (paddedPasswd === "xxacmccs2019") {

gotIt = true;
}
Input: foo, acmccs2019
Branch coverage: 75%, SBC: 100%

10/19

Implementation

@ dynamic analysis based on Jalangi

o expressive policy language: function parameters, callback
arguments

e model for native functions: arguments — return value
@ model commonly used functions, e.g., Array.push, Object.call

@ more than 100 unit tests to test labels propagation

11/19

Benchmarks

o different security problems:
o integrity: 19 injection vulnerabilities
[Staicu et al., NDSS, 2018]
e availability: 20 ReDoS vulnerabilities
[Staicu et al., USENIX Security, 2018]
o confidentiality: 7 buffer vulnerabilities
o confidentiality: 10 client-side leaks

@ inputs for triggering the attack and for increasing coverage

@ realistic security policies that capture at least one
source-to-sink flow per benchmark

@ 50,547 LOC, 65 upgrades, 0.68 average SBC

12/19

Benefit: Microflows

. Injections ReDoS Buffer Fingerprinting
2 08

£

Z 06

3

8

S 04

]

g 02

=%

0 -
TE T T GRG0y iy s s ey S iy i o T iy B 00 % % % e 0 o Py B

Benchmark

Explicit] Observable Implicit [N Hidden Implicit [_]

13/19

(%]
S
o
o
~
=
R
(@]
i
)
O
| -
S
o
w
i
=
9]
c
0]
m

Fingerprinting

Buffer

ReDoS

mﬂﬂuﬂﬂuHNmmuuH,NBMWmhﬂu.l.‘..l..l

e

>
N2
g ?
£ [E—
2 [E—)
= o
i
N
o
>
k]
v
N

~ © 1w % m & o~ o

SMO[J YUIS-0}-00IN0S JO ToquInN]

Benchmark

Taint Tracking [Z] Observable Tracking Il Permissive Upgrade [__]

14/19

(9]
(V]
Q
c
(0]
=
wv)
0
£
-
(D)
a
+
(7]
(@)
O

%
Benchmark

NsU [PU

urerSoxd o1} 9)eUIULIS) P[NOM JOYTUOUX
91} SISYM SUOTIEIO] 9POD JO ISUUNN]

15/19

Cost: LCR - Label Creep Ratio

1 7 14—+ 20 26 v 32 —+— 38 —@— 44
2 —%— 8 15 —e— 21 27 33 —— 39 —&— 45
3 —H— 9 —A— 16 —®— 22 —5— 28 34 —F— 40 —A— 46
1f —— 10 17 —+— 23 —&— 29 35 41 —v— 47
5 —o— 11 18 —<— 24 —— 30 —=— 36 42 —v— 48
6 —* 13 19 25 —4— 31 —&— 37 43 49

—

Label creep ratio

Percentage of execution

16/19

Cost: LCR - Label Creep Ratio

Label creep ratio

1 7 14—+ 20 26 v 32 —+— 38 —@— 44 50 —&
2 —%— 8 15 —e— 21 27 33 —— 39 —A— 45 52
3 —H— 9 —A— 16 —®— 22 —5— 28 H#— 40 —A— 46 —*— 53
1f —— 10 17 —+— 23 —&— 29 35 41 —v— 47 —+— 54
5 —o— 11 18 —<— 24 —— 30 —=— 36 42 —¥— 48 —%— 55 —A—
6 —* 13 19 25 —4— 31 —&— 37 43 49 —H— 56 —A—

Percentage of execution

Average max(LCR) = 20%

16/19

Cost: LCR - Label Creep Ratio (2)

0.45 - Taint Tracking —a—
0.4 [Observable Tracking — =

| Information Flow

0.3 Control

Label creep ratio
o
—
ot

Percentage of execution

17/19

Cost: Runtime Overhead

Measure taint relevant operations, e.g., binary operators, method
calls, conditionals.

Taint| Observable|Information Flow

Tracking| Tracking Control

Command injection 59,339 59,383 59,540
ReDoS vulnerabilities 210 540 633
Buffer vulnerabilities 5,740 6,007 6,084
Client-side programs 5,919 19,555 20,890

18/19

Cost: Runtime Overhead

Measure taint relevant operations, e.g., binary operators, method
calls, conditionals.

Taint| Observable|Information Flow

Tracking| Tracking Control

Command injection 59,339 59,383 59,540
ReDoS vulnerabilities 210 540 633
Buffer vulnerabilities 5,740 6,007 6,084
Client-side programs 5,919 19,555 20,890

2.5-fold increase in runtime operations when considering
implicit flows

18/19

Conclusions

56 benchmarks

integrity, availability, confidentiality; mostly non-malicious

19/19

Conclusions

56 benchmarks

integrity, availability, confidentiality; mostly non-malicious

Novel metrics

label creep ratio (LCR), sensitive branch coverage (SBC)

19/19

Conclusions

56 benchmarks

integrity, availability, confidentiality; mostly non-malicious

Novel metrics
label creep ratio (LCR), sensitive branch coverage (SBC)

Implicit flows

expensive to track, limited value

19/19

Conclusions

56 benchmarks

integrity, availability, confidentiality; mostly non-malicious

Novel metrics

label creep ratio (LCR), sensitive branch coverage (SBC)

Implicit flows

expensive to track, limited value

Taint analysis

suffices for integrity and availability benchmarks

19/19

Conclusions

56 benchmarks

integrity, availability, confidentiality; mostly non-malicious

Novel metrics

label creep ratio (LCR), sensitive branch coverage (SBC)

Implicit flows ‘@\L

expensive to track, limited value O
\to

Taint analysis

suffices for integrity and availability benchmarks

19/19

	Permissiveness

