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A B S T R A C T

Web applications are the most important gateway to the Internet. Billions
of users are relying on them every day and trusting them with their most
sensitive data. Therefore, ensuring the security and privacy of web appli-
cations is of paramount importance. Traditionally, the server-side code of
websites was written in languages such as PHP or Java for which secu-
rity issues are well studied and understood. Recently, however, full-stack
JavaScript web applications emerged, which have both their client-side and
server-side code written in this language.

We hypothesize that there are several unique properties of full-stack
JavaScript web applications that pose a serious challenge for the security
analysts: the new threat model for JavaScript, the excessive code reuse, the
prevalence of code transformations, and the existence of complex full-stack
threats. In this dissertation, we support this thesis by performing several
in-depth studies of the JavaScript ecosystem and by proposing multiple
improvements to the state-of-the art practices. First, we discuss two types
of security vulnerabilities that are aggravated by the new threat model:
injections and regular-expression denial of service. Second, we show that
excessive code reuse in the JavaScript ecosystem increases the chance of
relying on malicious or vulnerable code. Third, we provide evidence that
code transformations are widespread and that full-stack threats exist. Fi-
nally, we propose several improvements for techniques aimed at hardening
web applications: cost-effective consideration of implicit flows, the extrac-
tion of taint specification for third-party libraries, and pragmatic program
analysis for defending against injections.

The problem of securing full-stack JavaScript web applications is far
from settled, but we hope that the current dissertation serves as motiva-
tion for future work to consider this increasingly important class of appli-
cations. In particular, we argue for holistic approaches that consider full-
stack and cross-library information flows.
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Z U S A M M E N FA S S U N G

Webanwendungen sind die wichtigste Schnittstelle zum Internet. Milliar-
den Nutzer sind täglich auf sie angewiesen und vertrauen ihnen ihre sen-
siblen Daten an. Deshalb ist es besonders wichtig, die Sicherheit und den
Datenschutz von Webanwendungen zu gewährleisten. Der serverseitige
Code von Websites wurde üblicherweise in Sprachen wie PHP oder Ja-
va geschrieben, deren Sicherheitslücken gut erforscht und nachvollziehbar
sind. In letzter Zeit sind jedoch Full-Stack-JavaScript-Webanwendungen
aufgetreten, deren clientseitiger und serverseitiger Code in dieser Sprache
geschrieben ist.

Unsere Hypothese ist, dass viele Eigenschaften von Full-Stack-
JavaScript-Webanwendungen eine ernsthafte Herausforderung für einen
Sicherheitsanalysten darstellen: Das neue Bedrohungsmodell für Ja-
vaScript, die übermäßige Wiederverwendung von Code, verbreitete
Code-Transformationen und komplexe Full-Stack-Bedrohungen. In
dieser Dissertation vertreten wir diese These, indem wir das JavaScript-
Ökosystem mehrmals gründlich untersuchen und zahlreiche Verbesse-
rungen zum heutigen Stand der Technik aufzeigen. Als Erstes erörtern
wir zwei Arten von Sicherheitslücken, die durch das neue Bedrohungs-
modell verschärft werden: Injections und Denial-of-Service für reguläre
Ausdrücke. Als Zweites wird aufgezeigt, dass eine übermäßige Wieder-
verwendung von Code im JavaScript-Ökosystem die Wahrscheinlichkeit
erhöht, sich auf bösartigen oder anfälligen Code zu verlassen. Als Drit-
tes weisen wir die weite Verbreitung von Code-Transformationen und
das Vorkommen von Full-Stack-Bedrohungen nach. Schließlich werden
verschiedene verbesserte Techniken zum Härten von Webanwendungen
vorgestellt: Berücksichtigung der Effizienz von impliziten Datenflüssen,
Extraktion von Taint-Spezifikationen für Bibliotheken von Drittanbietern
und pragmatische Programmanalyse zur Abwehr von Injection-Angriffen.

Das Sicherheitsproblem von Full-Stack-JavaScript-Webanwendungen ist
noch lange nicht gelöst. Jedoch hoffen wir, dass die vorliegende Dissertati-
on dazu motiviert, diese zunehmend wichtige Applikationsart für zukünf-
tige Arbeiten zu berücksichtigen. Insbesondere befürworten wir ganzheit-
liche Ansätze, die Full-Stack und bibliotheksübergreifende Informations-
flüsse miteinschließen.
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1
I N T R O D U C T I O N

It is estimated that almost half of the global population accesses the In-
ternet, with figures as high as 70% in the developed countries. Web appli-
cations are the main vehicle for surfing the Internet, with some reporting
billions of regular active users1. Many of these web applications center
their business model around user data, which is their main asset. Natu-
rally, in recent years, such a valuable resource became the prime target for
attackers. Large multinational organizations reported data breaches affect-
ing millions or sometimes billions of users.

The largest data breach in history was reported by Yahoo! and occurred
in 2013 and 2014 when possibly all of its three billion user accounts were
compromised. First, the attacker deployed a targeted attack called spear
phishing that lured employees of the companies into clicking a danger-
ous link. This link deployed a malware, which further allowed access to
the internal network. Using this backdoor, the attacker obtained access to
hashed user passwords which were then used for faking web cookies, and
thus breaking into user accounts. According to the FBI2, the adversary ex-
ported the database containing private user information, i.e. names, phone
numbers and hashed passwords, and made it readily accessible on his
server in order to monetize it on the black market. This data was further
used for breaking into individual user accounts.

Another infamous example is the Equifax data breach from 2017 when
sensitive information about almost half of the US population was illegally
accessed. The attackers exploited a known vulnerability in a software library
(CVE-2017-5638) that the web application developers failed to patch. This
attack vector is so popular that the OWASP foundation included a new
entry in their latest top 10 most critical security risks for web applications:
“A9 - using components with known vulnerabilities”.

As illustrated by the previously discussed security incidents, attackers
exploit different parts of a web application when mounting their attacks,

1 https://www.statista.com/statistics/432390/active-gmail-
users/,
https://www.statista.com/statistics/264810/number-of-monthly-
active-facebook-users-worldwide/

2 https://www.fbi.gov/wanted/cyber/alexsey-belan
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e.g., vulnerable software components or web cookies. Therefore, when se-
curing web applications one should consider all their composing parts,
ideally in a holistic way. In Figure 1.1 we show a high-level overview of
a modern full-stack JavaScript web application. Traditionally, JavaScript
was only executed in the browser, but in recent years it became a popular
server-side language. We say that an application is full-stack JavaScript if
both its client-side and its server-side code is written in this programming
language. The advantages of doing so are multi-fold: easier knowledge
transfer, uniform usage of tools, and code reuse.

One may hope that security tools and practices traditionally used for
client-side code or for other server-side programming languages suffice
for hardening this new class of applications. However, there are several
reasons why that is not the case and why these applications need to be
treated separately by the security community. Below, we discuss several
particularities of full-stack JavaScript web applications:

P1 : new threat model for javascript code As mentioned earlier,
JavaScript traditionally runs inside a browser where the access to sensitive
resources is mediated through a security sandbox. On the server-side there
is no analogous mechanism, and all the executed JavaScript code, includ-
ing third-party libraries, has access to the entire available API, e.g., spawn
a new process, modify files on the disk, and open ports. To put it differ-
ently, there is no default privilege separation or code isolation mechanism
in the current server-side JavaScript platforms. This can lead to serious
security incidents, such as complete server takeover.

P2 : excessive code reuse The largest JavaScript repository for server-
side libraries, npm, has an unusually high average number of direct and
indirect dependencies per library [DMC16]. This is caused by the thin API
of the language and by the excessive usage of trivial [Abd+17] or micro
packages [Kul+17]. What is also remarkable about this ecosystem, when
compared with similar ones for other languages, is the high number of
security incidents that affected it in the recent years. At first, the fragility
of the ecosystem caused serious availability issues for numerous libraries,
i.e., until recently, developers could delete at will their published code,
impacting in real time all their transitive dependencies. Even though this
problem was addressed, the lack of automatic code vetting leaves the door
open to malware attacks: an adversary can compromise a given popular li-
brary and release a new version containing a malicious payload. Excessive
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code reuse directly increases the probability of relying on vulnerable or
malicious components, a devastating problem as illustrated by the Equifax
incident discussed earlier.

P3 : code transformations JavaScript code is rarely shipped in its
original form. Very often code transformation tools are applied either for
compacting the code size or for preventing reverse engineering, e.g., for
protecting intellectual property. This can impact the activities of a secu-
rity analyst in multiple ways. First, because in the transformation process
certain elements are either removed from the source code, e.g., comments
or semantically-rich identifier names, or added, e.g., dead code or unnec-
essary function calls, the performance of certain code analysis techniques
can be degraded by the transformation tools. Second, since JavaScript code
is shipped to the client-side, the transformation itself can serve as a side-
channel revealing the tools used on the server-side. Once an attacker has
such information, she can try to influence the development process of these
tools, e.g., by including backdoors.

P4 : full-stack threats Existing automated techniques for securing
web applications are limited to either client-side or server-side code. How-
ever, certain threats can only be detected if both sides of the application
are analyzed by an end-to-end tool. This is increasingly the case due to the
tendency to push more computation on the client-side and due to the in-
creasingly more powerful Web APIs, e.g., WebRTC, Push API, or WebSock-
ets. Full-stack JavaScript web application are not unique in this regard, but
the fact that they use a single language across the stack present a unique
opportunity for future work to propose full-stack security analysis tools.

Considering all these particularities, this dissertation supports the fol-
lowing thesis:

Full-stack JavaScript web applications present unique challenges and
opportunities to the security analysts that need to be addressed by novel

tools and practices.

We support this claim (i) by presenting new attacks enabled by the
emerging server-side threat model for JavaScript, (ii) by introducing a
novel targeted client-side attack that would require full-stack program
analysis for automatic detection, (iii) by showing evidence that code trans-
formation techniques are widely used in web applications and (iv) by dis-
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cussing in detail the impact of excessive code reuse and ways for remedy-
ing it.

While we emphasize the need for holistic practices that consider security
problems end-to-end, across the stack, we advise the reader that the cur-
rent dissertation puts a special emphasis on securing third-party libraries.
Such components are deployed practically in every part of a web applica-
tion. Nevertheless, we provide evidence that an attacker can exploit vulner-
abilities in such libraries to build attacks against live, full-stack JavaScript
applications. Moreover, by automatically analyzing the semantics of these
libraries we show that one can improve the performance of existing secu-
rity analyses.

1.1 outline of the thesis

This dissertation consists of three parts: (i) state of the ecosystem, (ii) vul-
nerabilities and attacks, and (iii) defenses. Every part consists of individ-
ual chapters, each of them supporting the thesis statement by discussing at
least one of the aforementioned particularities of full-stack JavaScript web
applications. For each chapter, we denote the corresponding particularity
described above in brackets.

1.1.1 State of the Ecosystem

In Chapter 2 we present an empirical study [Zim+19] of the npm ecosys-
tem, the largest repository of JavaScript libraries in the world. We show
how excessive code reuse in the ecosystem (P2) can lead to potentially dev-
astating malware attacks on the ecosystem. To quantify this problem, we
show that an average library depends on 79 third-party libraries and on
code managed by 39 maintainers. Moreover, we show that vulnerabilities
are a problem as well, transitively affecting up to 40% of the ecosystem.
Finally, we discuss a series of ways to improve the state of the npm ecosys-
tem.

In Chapter 3, we propose training an unsupervised machine learning
model for distinguishing between transformed and non-transformed code
(P3) and for identifying the tool that was used in the transformation pro-
cess [SSP19]. We show that this approach is effective at identifying trans-
formed code, closely matching the expectation of expert users. We then
use this model in an empirical study of thousands of live websites. Our
study shows that minification is widespread, that more complex obfusca-
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tion is rare yet non-negligible, and that particular obfuscation techniques
are clearly dominant.

1.1.2 Vulnerabilities and Attacks

We discuss in detail two classes of vulnerabilities that are amplified by
the difference in threat model between client- and server-side (P1): injec-
tion vulnerabilities [SPL18] in Chapter 4 and regular expression denial of
service (ReDoS) [SP18] in Chapter 5. We provide evidence that these prob-
lems are widespread in server-side JavaScript libraries and that developers
are slow to address them. Moreover, in Chapter 5 we discuss a methodol-
ogy that allows an attacker to leverage vulnerabilities in publicly available
libraries for attacking live websites.

In Chapter 6 we discuss leaky images [SP19], a novel privacy attack that
exploits exceptions in the same origin policy for targeted deanonymiza-
tion of users of popular web applications across origins. We also present
different flavors of this attack: a group and a scriptless variant. We show
that multiple high-profile websites are vulnerable to this attack and we
convince several of them to fix the problem. Finally, we discuss that auto-
matically deciding if a website is vulnerable to this attack or not requires
complex full-stack reasoning (P4).

1.1.3 Defenses

Our defenses are tailored for finding vulnerabilities in third-party server-
side libraries (P1,P2), but as we discuss in Chapter 5, these components
have direct impact on the security of full-stack JavaScript applications.

In Chapter 7 we propose Synode [SPL18], a lightweight static analysis
for identifying possible injection vulnerabilities coupled with a runtime en-
forcement mechanism. We show that Synode is effective, efficient, and has
few false positive. Static analysis is a good fit for this problem because the
injection vulnerabilities tend to be locally contained. However, applying
such a solution to security problems with non-local information flows can
be very challenging.

To address these limitations of static analysis, we explore the possibility
of using full-fledged information flow control. Therefore, in Chapter 8 we
propose iFlow [Sta+19], a dynamic program analysis that allows the user
to customize which type of information flows to be considered: explicit or
different types of implicit. In an empirical study with several real-world
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vulnerabilities and exploits we show that tracking only explicit flows, i.e.,
taint analysis, is enough for detecting integrity problems in non-malicious
server-side JavaScript code.

In Chapter 9 we advocate a hybrid solution that combines the best of
both worlds: we dynamically obtain precise information about the highly-
used parts of certain libraries, and use this information in a static analysis
to analyze, at scale, clients of these libraries. We propose Taser, a specifica-
tion extraction mechanism that has at its core a dynamic taint analysis. We
show that Taser can extract useful specifications for popular JavaScript
libraries that can subsequently be used to improve the effectiveness of a
commercial, static program analysis.

Finally, Chapter 10 discusses related work and Chapter 11 concludes
by highlighting future research directions for improving the security and
privacy of full-stack JavaScript web applications.

1.2 contributions

As further discussed in Section 1.3, the current dissertation is based upon
peer-reviewed pieces of work, each containing several contributions, vali-
dated by the research community. At a high level, though, we identify a
set of directions or research themes:

server-side fingerprinting attacks We show that an attacker can
obtain important information about the libraries and tools used on
the sever-side solely by interacting with the live system, i.e., without
having access to the server-side code. First, using ReDoS vulnerabili-
ties in open-source libraries, she can find out whether these libraries
are used or not. Second, using machine learning models, an attacker
can identify transformation tools, i.e., minification and obfuscation,
used by the server-side developers. Moreover, by using authenticated
image requests, she can deanonymize users of the website.

cost-effective vulnerability detection We present several pro-
gram analyses for detecting vulnerabilities in JavaScript code: static
(Synode), dynamic (iFlow) and hybrid (Taser). The unifying theme
for all these tools is the pragmatic design decision to favor scala-
bility and performance over completeness and soundness guaran-
tees. For instance, when building Synode we decide to only per-
form a lightweight intra-procedural analysis due to the particulari-
ties of the vulnerability class we consider and ignore complicated
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inter-procedural cases. Similarly, when building Taser, we only con-
sider explicit flows due to the limited value provided by implicit
flows in vulnerability detection. Naturally, these program analyses
can easily be bypassed by a motivated adversary who is aware of
these design decisions. However, we believe that in the absence of
such adversaries, i.e., when we are interested in errors made by oth-
erwise trustworthy developers, such pragmatic tools suffice.

community acknowledged vulnerabilities Several security advi-
sories were created based on the research work presented in this
dissertation, and we were awarded multiple bug bounties, showing
that the security problems we describe are relevant to practitioners.
Moreover, we are the first to show the link between exploiting vul-
nerabilities in JavaScript libraries and attacking live websites.

1.3 list of publications and open-source implementations

This dissertation is based on several peer-reviewed publications from which
it verbatim reuses material:

1. [Sta+20] Cristian-Alexandru Staicu, Martin Toldam Torp, Max Schäfer,
Anders Møller, and Michael Pradel. Extracting Taint Specifications for
JavaScript Libraries, International Conference on Software Engineer-
ing (ICSE), 2020,

2. [Sta+19] Cristian-Alexandru Staicu, Daniel Schoepe, Musard Balliu,
Michael Pradel, and Andrei Sabelfeld, An Empirical Study of Informa-
tion Flows in Real-World JavaScript, Workshop on Programming Lan-
guages and Analysis for Security (PLAS), 2019,

3. [SP19] Cristian-Alexandru Staicu and Michael Pradel, Leaky Images:
Targeted Privacy Attacks in the Web, USENIX Security Symposium, 2019,

4. [Zim+19] Markus Zimmermann, Cristian-Alexandru Staicu, Cam
Tenny, and Michael Pradel, Small World with High Risks: A Study of
Security Threats in the npm Ecosystem, USENIX Security Symposium,
2019,

5. [SSP19] Philippe Skolka, Cristian-Alexandru Staicu, and Michael
Pradel, Anything to Hide? Studying Minified and Obfuscated Code in the
Web, The Web Conference (WWW), 2019,
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6. [SP18] Cristian-Alexandru Staicu and Michael Pradel, Freezing the
Web: A Study of ReDoS Vulnerabilities in JavaScript-based Web Servers,
USENIX Security Symposium, 2018,

7. [SPL18] Cristian-Alexandru Staicu, Michael Pradel, and Benjamin
Livshits, SYNODE: Understanding and Automatically Preventing Injec-
tion Attacks on NODE.JS, Network and Distributed System Security
Symposium (NDSS), 2018.

In Table 1.1 we show the mapping between these publications and dif-
ferent chapters in this dissertation.

USENIX Security Symposium 2019 [Zim+19] Chapter 2

The Web Conference 2019 [SSP19] Chapter 3

The Network and Distributed System Secu-
rity Symposium 2018 [SPL18]

Chapter 4, Chapter 7

USENIX Security Symposium 2018 [SP18] Chapter 5

USENIX Security Symposium 2019 [SP19] Chapter 6

The Workshop on Programming Languages
and Analysis for Security 2019 [Sta+19]

Chapter 8

International Conference on Software Engi-
neering 2020 [Sta+20]

Chapter 9

Table 1.1: Mapping between peer-reviewed publications and different chapters.

In order to encourage future work to reuse our results, in Table 1.2, we
compile a list of links to research artifacts, i.e., experimental results or tools.
Moreover, we present a list of publicly disclosed vulnerabilities3 uncovered
by our research work. This list consists of tens of CVEs acknowledged by
the community, the majority of which were evaluated as medium to high
severity.

3 http://software-lab.org/projects/cris_vulnerabilities.html
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Chapter 2 https://github.com/markuszm/npm-

analysis

Chapter 3 http://software-lab.org/projects/

obfuscation_study.html

Chapter 5 https://github.com/sola-da/ReDoS-

vulnerabilities

Chapter 7 https://github.com/sola-da/Synode

Chapter 8 https://new-iflow.herokuapp.com/

download-iflow.html

Chapter 9 http://brics.dk/taser/

Table 1.2: Mapping between chapters and research artifacts.
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2
S E C U R I T Y T H R E AT S I N T H E N P M E C O S Y S T E M

In this chapter we empirically study different attack scenarios against the
largest JavaScript software repository in the world. We consider several
threat models that correspond both to software components going rogue,
i.e., malware, and to software components containing errors introduced
by developers, i.e., vulnerabilities. Our main contribution is to study how
heavy code reuse (see particularity P1 in the introduction) increases the
likelihood of certain attacks to occur and to show that this problem is get-
ting worse as time passes. While the scope of this chapter is limited to
analyzing standalone software components rather than complete applica-
tions, such third-party components are widely used both on the client-side
and on the server-side of web applications. Moreover, in Chapter 5 we
show how an attacker can use vulnerabilities in third-party code to attack
live, full-stack JavaScript websites. This chapter shares material with the
corresponding publication [Zim+19].

2.1 motivation

The node package manager, or short npm, provides hundreds of thousands
of free and reusable code packages to support JavaScript developers with
third-party code. The npm platform consists of an online database for
searching packages suitable for given tasks and a package manager, which
resolves and automatically installs dependencies. Since its inception in
2010, npm has steadily grown into a collection of over 800,000 packages,
as of February 2019, and will likely grow beyond this number. As the pri-
mary source of third-party JavaScript packages for the client-side, server-
side, and other platforms, npm is the centerpiece of a large and important
software ecosystem.

The npm ecosystem is open by design, allowing arbitrary users to freely
share and reuse code. Reusing a package is as simple as invoking a single
command, which will download and install the package and all its tran-
sitive dependencies. Sharing a package with the community is similarly
easy, making code available to all others without any restrictions or checks.
The openness of npm has enabled its growth, providing packages for any

13



situation imaginable, ranging from small utility packages to complex web
server frameworks and user interface libraries.

Perhaps unsurprisingly, npm’s openness comes with security risks, as
evidenced by several recent incidents that broke or attacked software run-
ning on millions of computers. In March 2016, the removal of a small utility
package called left-pad caused a large percentage of all packages to become
unavailable because they directly or indirectly depended on left-pad.1 In
July 2018, compromising the credentials of the maintainer of the popular
eslint-scope package enabled an attacker to release a malicious version of
the package, which tried to send local files to a remote server.2

Are these incidents unfortunate individual cases or first evidence of a
more general problem? Given the popularity of npm, better understand-
ing its weak points is an important step toward securing this software
ecosystem. In this chapter, we systematically study security risks in the
npm ecosystem by analyzing package dependencies, maintainers of pack-
ages, and publicly reported security issues. In particular, we study the
potential of individual packages and maintainers to impact the security
of large parts of the ecosystem, as well as the ability of the ecosystem to
handle security issues. Our analysis is based on a set of metrics defined on
the package dependency graph and its evolution over time. Overall, our
study involves 5,386,239 versions of packages, 199,327 maintainers, and
609 publicly known security issues.

The overall finding is that the densely connected nature of the npm
ecosystem introduces several weak spots. Specifically, our results include:

• Installing an average npm package introduces an implicit trust on
79 third-party packages and 39 maintainers, creating a surprisingly
large attack surface.

• Highly popular packages directly or indirectly influence many other
packages (often more than 100,000) and are thus potential targets for
injecting malware.

• Some maintainers have an impact on hundreds of thousands of pack-
ages. As a result, a very small number of compromised maintainer
accounts suffices to inject malware into the majority of all packages.

1 https://www.infoworld.com/article/3047177/javascript/how-one-
yanked-javascript-package-wreaked-havoc.html

2 https://github.com/eslint/eslint-scope/issues/39
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• The influence of individual packages and maintainers has been con-
tinuously growing over the past few years, aggravating the risk of
malware injection attacks.

• A significant percentage (up to 40%) of all packages depend on code
with at least one publicly known vulnerability.

Overall, these findings are a call-to-arms for mitigating security risks on
the npm ecosystem. As a first step, we discuss several mitigation strategies
and analyze their potential effectiveness. One strategy would be a vetting
process that yields trusted maintainers. We show that about 140 of such
maintainers (out of a total of more than 150,000) could halve the risk im-
posed by compromised maintainers. Another strategy we discuss is to vet
the code of new releases of certain packages. We show that this strategy
reduces the security risk slightly slower than trusting the involved main-
tainers, but it still scales reasonably well, i.e., trusting the top 300 packages
reduces the risk by half. If a given package passes the vetting process for
maintainers and code, we say it has “perfect first-party security”. If all its
transitive dependencies pass the vetting processes we say that it has “per-
fect third-party security”. If both conditions are met, we consider it a “fully
secured package”. While achieving this property for all the packages in the
ecosystem is infeasible, packages that are very often downloaded or that
have several dependents should aim to achieve it.

2.2 security risks in the npm ecosystem

To set the stage for our study, we describe some security-relevant particu-
larities of the npm ecosystem and introduce several threat models.

2.2.1 Particularities of Npm

locked dependencies In npm, dependencies are declared in a con-
figuration file called package.json, which specifies the name of the depen-
dent package and a version constraint. The version constraint either gives
a specific version, i.e., the dependency is locked, or specifies a range of com-
patible versions, e.g., newer than version X. Each time an npm package is
installed, all its dependencies are resolved to a specific version, which is
automatically downloaded and installed.

Therefore, the same package installed on two different machines or at
two different times may download different versions of a dependency. To
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solve this problem, npm introduced package-lock.json, which developers
can use to lock their transitive dependencies to a specific version until a
new lock file is generated. That is, each package in the dependency tree is
locked to a specific version. In this way, users ensure uniform installation of
their packages and coarse grained update of their dependencies. However,
a major shortcoming of this approach is that if a vulnerability is fixed for
a given dependency, the patched version is not installed until the package-
lock.json file is regenerated. In other words, developers have a choice be-
tween uniform distribution of their code and up-to-date dependencies. Of-
ten they choose the later, which leads to a technical lag [DMC18] between
the latest available version of a package and the one used by dependents.

heavy reuse Recent work [DMC17; Kik+17] provides preliminary evi-
dence that code reuse in npm differs significantly from other ecosystems.
One of the main characteristic of the npm ecosystem is the high number
of transitive dependencies. For example, when using the core of the pop-
ular Spring web framework in Java, a developer transitively depends on
ten other packages. In contrast, the Express.js web framework transitively
depends on 47 other packages.

micropackages Related to the reuse culture, another interesting char-
acteristic of npm is the heavy reliance on packages that consist of only few
lines of source code, which we call micropackages. Related work documents
this trend and warns about its dangers [Abd+17; Kul+17]. These packages
are an important part of the ecosystem, yet they increase the surface for
certain attacks as much as functionality heavy packages. This excessive
fragmentation of the npm codebase can thus lead to very high number of
dependencies.

no privilege separation In contrast to, e.g., the Java security model
in which a SecurityManager3 can restrict the access to certain sensitive
APIs, JavaScript does not provide any kind of privilege separation between
code loaded from different packages. That is, any third-party package has
the full privileges of the entire application. This situation is compounded
by the fact that many npm packages run outside of a browser, in particular
on the Node.js platform, which does not provide any kind of sandbox.

3 https://docs.oracle.com/javase/6/docs/api/java/lang/
SecurityManager.html
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Instead, any third-party package can access, e.g., the file system and the
network.

no systematic vetting The process of discovering vulnerabilities in
npm packages is still in its infancy. There currently is no systematic vet-
ting process for code published on npm. Instead, known vulnerabilities
are mostly reported by individuals, who find them through manual analy-
sis or in recent research work, e.g., injection vulnerabilities [SPL18], regular
expression denial of service [Dav+18; SP18], path traversals [Gon18], bind-
ing layer bugs [Bro+17].

publishing model In order to publish a package, a developer needs
to first create an account on the npm website. Once this prerequisite is met,
adding a new package to the repository is as simple as running the “npm
publish” command in a folder containing a package.json file. The user who
first published the package is automatically added to the maintainers set
and hence she can release future versions of that package. She can also
decide to add additional npm users as maintainers. What is interesting to
notice about this model is that it does not require a link to a public version
control system, e.g., GitHub, hosting the code of the package. Nor does it
require that persons who develop the code on such external repositories
also have publishing rights on npm. This disconnect between the two plat-
forms has led to confusion4 in the past and to stealthy attacks that target
npm accounts without changes to the versioning system.

2.2.2 Threat Models

The idiosyncratic security properties of npm, as described above, enable
several scenarios for attacking users of npm packages. The following dis-
cusses threat models that either correspond to attacks that have already
occurred or that we consider to be possible in the future.

malicious packages (tm-mal) Adversaries may publish packages
containing malicious code on npm and hence trick other users into in-
stalling or depending on such packages. In 2018, the eslint-scope incident
mentioned earlier has been an example of this threat. The package de-
ployed its payload at installation time through an automatically executed

4 http://www.cs.tufts.edu/comp/116/archive/spring2018/
etolhurst.pdf
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post-installation script. Other, perhaps more stealthy methods for hiding
the malicious behavior could be envisioned, such as downloading and ex-
ecuting payloads only at runtime under certain conditions. Strongly re-
lated to malicious packages are packages that violate the user’s privacy by
sending usage data to third parties, e.g., insight5 or analytics-node6. While
these libraries are legitimate under specific conditions, some users may not
want to be tracked in this way. Even though the creators of these packages
clearly document the tracking functionality, transitive dependents may not
be aware that one of their dependencies deploys tracking code.

exploiting unmaintained legacy code (tm-leg) As with any
larger code base, npm contains vulnerable code, some of which is docu-
mented in public vulnerability databases such as npm security advisories7

or Snyk vulnerability DB8. As long as a vulnerable package remains un-
fixed, an attacker can exploit it in applications that transitively depend on
the vulnerable code. Because packages may become abandoned due to de-
velopers inactivity [CM17] and because npm does not offer a forking mech-
anism, some packages may never be fixed. Even worse, the common prac-
tice of locking dependencies may prevent applications from using fixed
versions even when they are available.

package takeover (tm-pkg) An adversary may convince the current
maintainers of a package to add her as a maintainer. For example, in the
recent event-stream incident9, the attacker employed social engineering to
obtain publishing rights on the target package. The attacker then removed
the original maintainer and hence became the sole owner of the package. A
variant of this attack is when an attacker injects code into the source base of
the target package. For example, such code injection may happen through
a pull request, via compromised development tools, or even due to the fact
that the attacker has commit rights on the repository of the package, but
not npm publishing rights. Once vulnerable or malicious code is injected,
the legitimate maintainer would publish the package on npm, unaware of
its security problems. Another takeover-like attack is typosquatting, where
an adversary publishes malicious code under a package name similar to
the name of a legitimate, popular package. Whenever a user accidentally

5 https://www.npmjs.com/package/insight
6 https://www.npmjs.com/package/analytics-node
7 https://www.npmjs.com/advisories
8 https://snyk.io/vuln/?type=npm
9 https://github.com/dominictarr/event-stream/issues/116
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mistypes a package name during installation, or a developer mistypes the
name of a package to depend on, the malicious code will be installed.
Previous work shows that typosquatting attacks are easy to deploy and
effective in practice [Tsc16].

account takeover (tm-acc) The security of a package depends
on the security of its maintainer accounts. An attacker may compromise
the credentials of a maintainer to deploy insecure code under the main-
tainer’s name. At least one recent incident (eslint-scope) is based on ac-
count takeover. While we are not aware of how the account was hijacked
in this case, there are various paths toward account takeover, e.g., weak
passwords, social engineering, reuse of compromised passwords, and data
breaches on npm.

collusion attack (tm-coll) The above scenarios all assume a sin-
gle point of failure. In addition, the npm ecosystem may get attacked via
multiple instances of the above threats. Such a collusion attack may hap-
pen when multiple maintainers decide to conspire and to cause intentional
harm, or when multiple packages or maintainers are taken over by an at-
tacker.

2.3 methodology

To analyze how realistic the above threats are, we systematically study
package dependencies, maintainers, and known security vulnerabilities in
npm. The following explains the data and metrics we use for this study.

2.3.1 Data Used for the Study

packages and their dependencies To understand the impact of
security problems across the ecosystem, we analyze the dependencies be-
tween packages and their evolution.

Definition 2.3.1 Let t be a specific point in time, Pt be a set of npm package
names, and Et = {(pi, pj)|pi 6= pj ∈ Pt} a set of directed edges between pack-
ages, where pi has a regular dependency on pj. We call Gt = (Pt, Et) the npm
dependency graph at a given time t.

We denote the universe of all packages ever published on npm with P .
By aggregating the meta information about packages, we can easily con-

19



struct the dependency graph without the need to download or install every
package. Npm offers an API endpoint for downloading this metadata for
all the releases of all packages ever published. In total we consider 676,539

nodes and 4,543,473 edges.
To analyze the evolution of packages we gather data about all their re-

leases. As a convention, for any time interval t, such as years or months,
we denote with t the snapshot at the beginning of that time interval. For
example, G2015 refers to the dependency graph at the beginning of the year
2015. In total we analyze 5,386,239 releases, therefore an average of almost
eight versions per package. Our observation period ends in April 2018.

maintainers Every package has one or more developers responsible
for publishing updates to the package.

Definition 2.3.2 For every p ∈ Pt, the set of maintainers M(p) contains all
users that have publishing rights for p.

Note that a specific user may appear as the maintainer of multiple pack-
ages and that the union of all maintainers in the ecosystem is denoted with
M.

vulnerabilities The npm community issues advisories or public re-
ports about vulnerabilities in specific npm packages. These advisories spec-
ify if there is a patch available and which releases of the package are af-
fected by the vulnerability.

Definition 2.3.3 We say that a given package p ∈ P is vulnerable at a mo-
ment t if there exists a public advisory for that package and if no patch was released
for the described vulnerability at an earlier moment t′ < t.

We denote the set of vulnerable packages with V ⊂ P . In total, we
consider 609 advisories affecting 600 packages. We extract the data from
the publicly available npm advisories10.

2.3.2 Metrics

We introduce a set of metrics for studying the risk of attacks on the npm
ecosystem.

10 https://www.npmjs.com/advisories
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packages and their dependencies The following measures the in-
fluence of a given package on other packages in the ecosystem.

Definition 2.3.4 For every p ∈ Pt, the package reach PR(p) represents the set
of all the packages that have a transitive dependency on p in Gt.

Note that the package itself is not included in this set. The reach PR(p)
contains names of packages in the ecosystem. Therefore, the size of the set
is bounded by the following values 0 ≤ |PR(p)| < |Pt|.

Since |PR(p)| does not account for the ecosystem changes, the metric
may grow simply because the ecosystem grows. To address this, we also
consider the average package reach:

PRt =
∑∀p∈Pt |PR(p)|

|Pt|
(2.1)

Using the bounds discussed before for PR(p), we can calculate the ones
for its average 0 ≤ PRt < |Pt|. The upper limit is obtained for a fully
connected graph in which all packages can reach all the other packages and
hence |PR(p)| = |Pt| − 1, ∀p. If PRt grows monotonously, we say that the
ecosystem is getting more dense, and hence the average package influences
an increasingly large number of packages.

The inverse of package reach is a metric to quantify how many packages
are implicitly trusted when installing a particular package.

Definition 2.3.5 For every p ∈ Pt, the set of implicitly trusted packages
ITP(p) contains all the packages pi for which p ∈ PR(pi).

Similarly to the previous case, we also consider the size of the set |ITP(p)|
and the average number of implicitly trusted package ITPt, having the
same bounds as their package reach counterpart.

Even though the average metrics ITPt and PRt are equivalent for a given
graph, the distinction between their non-averaged counterparts is very im-
portant from a security point of view. To see why, consider the example
in Figure 2.1. The average PR = ITP is 5/6 = 0.83 both on the right and
on the left. However, on the left, a popular package p1 is dependent upon
by many others. Hence, the package reach of p1 is five, and the number of
implicitly trusted packages is one for each of the other packages. On the
right, though, the number of implicitly trusted packages for p4 is three, as
users of p4 implicitly trust packages p1, p2, and p3.
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(a) Wide distribution of trust:
max(PR) = 5, max(ITP) = 1
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(b) Narrow distribution of trust:
max(PR) = 3, max(ITP) = 3

Figure 2.1: Dependency graphs with different maximum package reaches (PR)
and different maximum numbers of trusted packages (ITP).

maintainers The number of implicitly trusted packages or the pack-
age reach are important metrics for reasoning about TM-pkg, but not about
TM-acc. That is because users may decide to split their functionality across
multiple micropackages for which they are the sole maintainers. To put
it differently, a large attack surface for TM-pkg does not imply one for
TM-acc.

Therefore, we define maintainer reach MRt(m) and implicitly trusted
maintainers ITMt(p) for showing the influence of maintainers.

Definition 2.3.6 Let m be an npm maintainer. The maintainer reach MR(m)
is the combined reach of all the maintainer’s packages, MR(m) = ∪m∈M(p)PR(p)

Definition 2.3.7 For every p ∈ Pt, the set of implicitly trusted maintainers
ITM(p) contains all the maintainers that have publishing rights on at least one
implicitly trusted package, ITM(p) = ∪pi∈ITP(p)M(pi).

The above metrics have the same bounds as their packages counterparts.
Once again, the distinction between the package and the maintainer-level
metrics is for shedding light on the security relevance of human actors in
the ecosystem.

Furthermore, to approximate the maximum damage that colluding main-
tainers can incur on the ecosystem (TM-coll), we define an order in which
the colluding maintainers are selected:

Definition 2.3.8 We call an ordered set of maintainers L ⊂ M a desirable
collusion strategy iff ∀mi ∈ L there is no mk 6= mi for which ∪j<iMR(mj) ∪
MR(mi) < ∪j<iMR(mj) ∪MR(mk).

Therefore, the desirable collusion strategy is a hill climbing algorithm
in which at each step we choose the maintainer that provides the highest
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local increase in package reach at that point. We note that the problem of
finding the set of n maintainers that cover the most packages is an NP-
hard problem called maximum coverage problem. Hence, we believe that the
proposed solution is a good enough approximation that shows how vul-
nerable the ecosystem is to a collusion attack, but that does not necessary
yield the optimal solution.

vulnerabilities For reasoning about TM-leg, we need to estimate
how much of the ecosystem depends on vulnerable code:

Definition 2.3.9 Given all vulnerable packages pi ∈ Vt at time t, we define the
reach of vulnerable code at time t as VRt = ∪pi∈Vt PR(pi).

Of course the actual reach of vulnerable code can not be fully calculated
since it would rely on all vulnerabilities present in npm modules, not only
on the published ones. However, since in TM-leg we are interested in pub-
licly known vulnerabilities, we define our metric according to this scenario.
In these conditions, the speed at which vulnerabilities are reported is an
important factor to consider:

Definition 2.3.10 Given all vulnerable packages pi ∈ Vt at time t, we define the
vulnerability reporting rate VRRt at time t as VRRt =

|Vt |
|Pt | .

2.4 results

We start by reporting the results on the nature of package level dependen-
cies and their evolution over time (corresponding to TM-mal and TM-pkg).
We then discuss the influence that maintainers have in the ecosystem (re-
lated to TM-acc and TM-coll). Finally, we explore the dangers of depending
on unpatched security vulnerabilities (addressing TM-leg).

2.4.1 Dependencies in the Ecosystem

To set the stage for a thorough analysis of security risks entailed by the
structure of the npm ecosystem, we start with a general analysis of npm
and its evolution. Since its inception in 2010, the npm ecosystem has grown
from a small collection of packages maintained by a few people to the
world’s largest software ecosystem. Figure 2.2 shows the evolution of the
number of packages available on npm and the number of maintainers re-
sponsible for these packages. Both numbers have been increasing super-
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Figure 2.2: Evolution of number of packages and maintainers.

linearly over the past eight years. At the end of our measurement range,
there is a total of 676,539 packages, a number likely to exceed one million
in the near future. These packages are taken care of by a total of 199,327

maintainers. The ratio of packages to maintainers is stable across our ob-
servation period (ranging between 2.81 and 3.51).

In many ways, this growth is good news for the JavaScript community,
as it increases the code available for reuse. However, the availability of
many packages may also cause developers to depend on more and more
third-party code, which increases the attack surface for TM-pkg by giving
individual packages the ability to impact the security of many other pack-
ages. The following analyzes how the direct and transitive dependencies
of packages are evolving over time (Section 2.4.1.1) and how many other
packages individual packages reach via dependencies (Section 2.4.1.2).

2.4.1.1 Direct and Transitive Dependencies

Figure 2.3 shows how many other packages an average npm package de-
pends on directly and transitively. The number of direct dependencies has
been increasing slightly from 1.3 in 2011 to 2.8 in 2018, which is perhaps
unsurprising given the availability of an increasing code base to reuse. The
less obvious observation is that a small, linear increase in direct dependen-
cies leads to a significant, super-linear increase in transitive dependencies.
As shown by the upper line in Figure 2.3, the number of transitive depen-
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Figure 2.3: Evolution of direct package dependencies and its impact on transi-
tive dependencies. Note the logarithmic scale on the y-axis.

dencies of an average package has increased to a staggering 80 in 2018

(note the logarithmic scale).
From a security perspective, it is important to note that each directly or

transitively depended on package becomes part of the implicitly trusted
code base. When installing a package, each depended upon package runs
its post-installation scripts on the user’s machine – code executed with the
user’s operating system-level permissions. When using the package, calls
into third-party modules may execute any of the code shipped with the
depended upon packages.

One can observe in Figure 2.3 a chilling effect on the number of depen-
dencies around the year 2016 which will become more apparent in the
following graphs. Decan et al. [DMG19] hypothesize that this effect is due
to the left-pad incident. In order to confirm that this is not simply due to re-
moval of more than a hundred packages belonging to the left-pad’s owner,
we remove all the packages owned by this maintainer. We see no signifi-
cant difference for the trend in Figure 2.3 when removing these packages,
hence we conclude that indeed there is a significant change in the structure
of transitive dependencies in the ecosystem around 2016.
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Figure 2.4: Evolution of package reach for an average package (top) and the
top-5 packages (bottom).
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Figure 2.5: Distribution of package reach by individual packages, and how it
changes over time. Note the log scale on the vertical axis.

2.4.1.2 Package Reach

The above analysis focuses on depended upon packages. We now study
the inverse phenomenon: packages impacted by individual packages, i.e.,
package reach as defined in Section 2.3. Figure 2.4 shows how many other
packages a single package reaches via direct or indirect dependencies. The
graph at the top is for an average package, showing that it impacts about
230 other packages in 2018, a number that has been growing since the
creation of npm. The graph at the bottom shows the package reach of the
top-5 packages (top in terms of their package reach, as of 2018). In 2018,
these packages each reach between 134,774 and 166,086 other packages,
making them an extremely attractive target for attackers.

To better understand how the reach of packages evolves over time, Fig-
ure 2.5 shows the distribution of reached packages for multiple years. For
example, the red line shows that in 2018, about 24,500 packages have
reached at least 10 other packages, whereas only about 9,500 packages
were so influential in 2015. Overall, the figure shows that more and more
packages are reaching a significant number of other packages, increasing
the attractiveness of attacks that rely on dependencies.

The high reach of a package amplifies the effect of both vulnerabilities
(TM-leg) and of malicious code (TM-mal). As an example for the latter,
consider the event-stream incident discussed when introducing TM-acc in
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Section 2.2.2. By computing event-stream’s reach and comparing it with
other packages, we see that this package is just one of many possible tar-
gets. As of April 1, 2018 (the end of our measurement period), event-stream
has a reach of 5,466. That is, the targeted package is relatively popular, but
still far from being the top-most attractive package to compromise. In fact,
1,165 other packages have a greater or equal reach than event-stream.

In order to perform a similar analysis for the eslint-scope security inci-
dent, we need to use a slightly modified version of package reach. This
attack targeted a development tool, namely eslint, hence, to fully estimate
the attack surface we need to consider dev dependencies in our definition
of reach. We do not normally consider this type of dependencies in our
measurements because they are not automatically installed with a package,
unlike regular dependencies. They are instead used only by the developers
of the packages. Therefore the modified version of package reach considers
both transitive regular dependencies and direct dev dependencies.

We observe that eslint-scope has a modified reach of more than 100,000

packages at the last observation point in the data set. However, there are
347 other packages that have a higher reach, showing that even more seri-
ous attacks may occur in the future.

2.4.2 Analysis of Maintainers

We remind the reader that there is a significant difference between npm
maintainers and repository contributors, as discussed in Section 2.2.1. Even
though contributors also have a lot of control over the code that will even-
tually end up in an npm package, they can not release a new version on
npm, only the maintainers have this capability. Hence, the discussion that
follows, about the security risks associated with maintainers, should be
considered a lower bound for the overall attack surface.

Attacks corresponding to TM-acc in which maintainers are targeted are
not purely hypothetical as the infamous eslint-scope incident discussed
earlier shows. In this attack, a malicious actor hijacked the account of an
influential maintainer and then published a version of eslint-scope con-
taining malicious code. This incident is a warning for how vulnerable the
ecosystem is to targeted attacks and how maintainers influence can be
used to deploy malware at scale. We further discuss the relation between
packages and maintainers.
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Figure 2.6: Evolution of maintainers sorted by package count per year.

2.4.2.1 Packages per Maintainer

Even though the size of the ecosystem grows super-linearly as discussed
in Section 2.4.1, one would expect that this is caused mainly by new de-
velopers joining the ecosystem. However, we observe that the number of
packages per maintainer also grows suggesting that the current members
of the platform are actively publishing new packages. The average number
of packages controlled by a maintainer raises from 2.5 in 2012 to 3.5 in 2013

and almost 4.5 in 2018. Conversely, there are on average 1.35 maintainers
in the lifetime of a package. The top 5,000 most popular packages have an
average number of 2.83 maintainers. This is not unexpected, since multi-
ple people are involved in developing the most popular packages, while
for the majority of new packages there is only one developer.

Next, we study in more detail the evolution of the number of packages
a maintainer controls. Figure 2.6 shows the maintainer package count plot-
ted versus the number of maintainers having such a package count. Every
line represents a year. The scale is logarithmic to base 10. It shows that
the majority of maintainers maintain few packages, yet some maintainers
maintain over 100 packages. Over the years, the package count for the
maintainers increased consistently. In 2015, only slightly more than 25,000

maintainers maintained more than one package, whereas this number has
more than tripled by 2018.
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Figure 2.7: Evolution of package count for six popular maintainers.

We further analyze five different maintainers in top 20 according to num-
ber of packages and plot the evolution of their package count over the
years in Figure 2.7. types is the largest maintainer of type definitions for
TypeScript, most likely a username shared by multiple developers at Mi-
crosoft, ehsalazar maintains many security placeholder packages, jonschlink-
ert and sindresorhus are maintaining many micropackages and isaacs is the
npm founder. From Figure 2.7 we can see that for two of these maintainers
the increase is superlinear or even near exponential: types and kylemathews
have sudden spikes where they added many packages in a short time. We
explain this by the tremendous increase in popularity for TypeScript in the
recent years and by the community effort to prevent typosquatting attacks
by reserving multiple placeholder. The graph of the other maintainers is
more linear, but surprisingly it shows a continuous growth for all the six
maintainers.

2.4.2.2 Implicitly Trusted Maintainers

One may argue that the fact that maintainers publish new packages is a
sign of a healthy ecosystem and that it only mimics its overall growth.
However, we show that while that may be true, we also see an increase
in the general influence of maintainers. That is, on average every package
tends to transitively rely on more and more maintainers over time.
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Figure 2.8: Evolution of average number of implicitly trusted maintainers over
years in all packages and in the most popular ones.

In Figure 2.8 we show the evolution of ITMt, the average number of
implicitly trusted maintainers. As can be seen, ITMt almost doubled in
the last three years for the average npm package, despite the plateau of
the curve reached in 2016 which we again speculate it is caused by the
left-pad incident. This is a worrisome development since compromising
any of the maintainer accounts a package trusts may seriously impact the
security of that package, as discussed in TM-acc. The positive aspect of the
data in Figure 2.8 is that the growth in the number of implicitly trusted
maintainers seems to be less steep for the top 10,000 packages compared
to the whole ecosystem. We hypothesize that the developers of popular
packages are aware of this problem and actively try to limit the ITMt.
However, a value over 20 for the average popular package is still high
enough to be problematic.

When breaking the average ITMt discussed earlier into individual points
in Figure 2.9, one can observe that the majority of these packages can be
influenced by more than one maintainer. This is surprising since most of
the popular packages are micropackages such as "inherits" or "left-pad" or
libraries with no dependencies like "moment" or "lodash". However, only
around 30% of these top packages have a maintainer cost higher than 10.
Out of these, though, there are 643 packages influenced by more than a
hundred maintainers.
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Figure 2.9: Number of implicitly trusted maintainers for top 10,000 most popu-
lar packages.

2.4.2.3 Maintainers Reach

In Figure 2.10, we plot the reach MRt of the maintainers in the npm ecosys-
tem. The reach has increased over the years at all levels. For example, in
2015 there were 2,152 maintainers that could affect more than 10 pack-
ages, and this number increased to 4,041 in 2016, 6,680 in 2017 and finally
reaching an astonishingly high 10,534 in 2018. At the other end of the
distribution, there were 59 maintainers that could affect more than 10,000

packages in 2015, 163 in 2016, 249 in 2017 and finally 391 in 2018. The
speed of growth for MRt is worrisome, showing that more and more de-
velopers have control over thousands of packages. If an attacker manages
to compromise the account of any of the 391 most influential maintainers,
the community will experience a serious security incident, reaching twice
as many packages as in the event-stream attack.

Finally, we look at the scenario in which multiple popular maintainers
collude, according to the desirable collusion strategy introduced in Sec-
tion 2.3.2, to perform a large-scale attack on the ecosystem, i.e., TM-col. In
Figure 2.11 we show that 20 maintainers can reach more than half of the
ecosystem. Past that point every new maintainer joining does not increase
significantly the attack’s performance.
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Figure 2.10: Distribution of maintainers reach in different years.

Figure 2.11: Combined reach of 100 influential maintainers.
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Figure 2.12: Total reach of packages for which there is at least one unpatched
advisory (vulnerability reach VRt).

2.4.3 Security Advisories Evolution

Next, we study how often vulnerabilities are reported and fixed in the
npm ecosystem (TM-leg). Figure 2.13 shows the number of reported vul-
nerabilities in the lifetime of the ecosystem. The curve seems to resemble
the evolution of number of packages presented in Figure 2.2, with a steep
increase in the last two years. To explore this relation further we plot in
Figure 2.14 the evolution of the number of advisories reported per 10,000

packages and we observe that it grows from two in 2013 to almost eight in
2018. This is a sign of a healthy security community that reports vulnera-
bilities at a very good pace, keeping up with the growth of the ecosystem.

When analyzing the type of reported vulnerabilities in details, we ob-
serve that almost half of the advisories come from two large-scale cam-
paigns and not a broader community effort: First, there are 141 advisories
published in January 2017 that involve npm packages that download re-
sources over HTTP, instead of HTTPs. Second, there are 120 directory
traversal vulnerabilities reported as part of the research efforts of Liang
Gong [Gon18]. Nevertheless, this shows the feasibility of large-scale vul-
nerability detection and reporting on npm.
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Figure 2.13: Evolution of the total and unpatched number of advisories.

Figure 2.14: Evolution of VRRt, the rate of published vulnerabilities per 10,000

packages.
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Publishing an advisory helps raise awareness of a security problem in
an npm package, but in order to keep the users secure, there needs to be a
patch available for a given advisory. In Figure 2.13 we show the evolution
of the number of unpatched security vulnerabilities in npm, as defined
in Section 2.3. This trend is alarming, suggesting that two out of three
advisories are still unpatched, leaving the users at risk. When manually
inspecting some of the unpatched advisories we notice that a large percent-
age of unpatched vulnerabilities are actually advisories against malicious
typosquatting packages for which no fix can be available.

To better understand the real impact of the unpatched vulnerabilities we
analyze how much of the ecosystem they impact, i.e., vulnerability reach
as introduced in Section 2.3.2. To that end, we compute the reach of un-
patched packages at every point in time in Figure 2.12. At a first sight, this
data shows a much less grim picture than expected, suggesting that the
reach of vulnerable packages is dropping over time. However, we notice
that the effect of vulnerabilities tends to be retroactive. That is, a vulner-
ability published in 2015 affects multiple versions of a package released
prior to that date, hence influencing the data points corresponding to the
years 2011-2014 in Figure 2.12. Therefore, the vulnerabilities that will be
reported in the next couple of years may correct for the downwards trend
we see on the graph. Independent of the downwards trend, the fact that for
the majority of the time the reach of vulnerable unpatched code is between
30% and 40% is alarming.

2.5 potential mitigations

The following section discusses ideas for mitigating some of the security
threats in the npm ecosystem. We do not provide here fully developed
solutions, but instead outline ideas for future research, along with an ini-
tial assessment of their potential and challenges involved in implementing
them.

2.5.1 Raising Developer Awareness

One line of defense against the attacks described in this chapter is to
make developers who use third-party packages more aware of the risks
entailed by depending on a particular package. Currently, npm shows for
each package the number of downloads, dependencies, dependents, and
open issues in the associated repository. However, the site does not show
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Figure 2.15: Correlation between number of vulnerabilities and number of de-
pendencies.

any information about the transitive dependencies or about the number of
maintainers that may influence a package, i.e., our ITP and ITM metrics.
As initial evidence that including such metrics indeed predicts the risk of
security issues, Figure 2.15 shows the number of implicitly trusted pack-
ages versus the number of vulnerabilities a package is affected by. We find
that the two values are correlated (Pearson correlation coefficient of 0.495),
which is not totally unexpected since adding more dependencies increases
the chance of depending on vulnerable code. Showing such information,
e.g., the ITP metric, could help developers make more informed decisions
about which third-party packages to rely on.

2.5.2 Warning about Vulnerable Packages

To warn developers about unpatched vulnerabilities in their dependen-
cies, the npm audit tool has been introduced. It compares all directly
depended upon packages against a database of known vulnerabilities, and
warns a developer when depending upon a vulnerable version of a pack-
age. While being a valuable step forward, the tool currently suffers from at
least three limitations. First, it only considers direct dependencies but ig-
nores any vulnerabilities in transitive dependencies. Second, the tool is lim-
ited to known vulnerabilities, and hence its effectiveness depends on how
fast advisories are published. Finally, this defense is insufficient against
malware attacks.
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Figure 2.16: Decrease in average number of implicitly trusted maintainers and
packages as the set of trusted maintainers or packages increases.

2.5.3 Code Vetting

A proactive way of defending against both vulnerable and malicious code
is code vetting. Similar to other ecosystems, such as mobile app stores,
whenever a new release of a vetted package is published, npm could ana-
lyze its code. If and only if the analysis validates the new release, it is made
available to users. Since the vetting process may involve semi-automatic or
even manual steps, we believe that it is realistic to assume that it will be
deployed step by step in the ecosystem, starting with the most popular
packages. Figure 2.16 (orange curve) illustrates the effect that such code
vetting could have on the ecosystem. The figure shows how the average
number of implicitly trusted packages, ITP, reduces with an increase in
number of vetted and therefore trusted packages. For example, vetting the
most dependent upon 1,500 packages would reduce the ITP ten fold, and
vetting 4,000 packages would reduce it by a factor of 25.

An obvious question is how to implement such large-scale code vetting,
in particular, given that new versions of packages are released regularly.
To estimate the cost of vetting new releases, Figure 2.17 shows the average
number of lines of code that are changed per release of a package, and
would need to be vetted to maintain a specific number of trusted pack-
ages. For example, vetting the changes made in a single new release of the
top 400 most popular packages requires to analyze over 100,000 changed
lines of code. One way to scale code vetting to this amount of code could
be automated code analysis tools. There are several recent efforts for im-
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Figure 2.17: Number of lines of code that need to be vetted for achieving a cer-
tain number of trusted packages.

proving the state of the art npm security auditing, both from academia,
e.g., Synode in Chapter 7, BreakApp [Vas+18], NodeSec [Gon18], NoRe-
grets [MMT18], Node.cure [DWL18], and from industry practitioners, e.g.,
Semmle11, r2c12, and DeepScan13. Orthogonal to automated code analysis
tools, the community could establish crowd-sourced package vetting, e.g.,
in a hierarchically organized code distribution model similar to the Debian
ecosystem.

Another challenge for code vetting is that npm packages, in contrast to
apps in mobile app stores, are used across different platforms with dif-
ferent security models. For example, XSS vulnerabilities are relevant only
when a package is used on the client-side, whereas command injection via
the exec API, as discussed in Chapter 4, is a concern only on the server-
side. A code vetting process could address this challenge by assigning
platform-specific labels, e.g., “vetted for client-side” or ”vetted for server-
side”, depending on which potential problems the vetting reveals.

2.5.4 Training and Vetting Maintainers

Another line of proactive defense could be to systematically train and vet
highly influential maintainers. For example, this process could validate

11 https://semmle.com/
12 https://r2c.dev/
13 https://deepscan.io/
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the identity of maintainers, support maintainers in understanding basic
security principles, and ensure that their accounts are protected by state-
of-the-art techniques, such as two-factor authentication. To assess the effect
that such a process would have, we simulate how training and vetting a
particular number of trusted maintainers influences the average number of
implicitly trusted maintainers, ITM. The simulation assumes that the most
influential maintainers are vetted first, and that once a maintainer is vetted
she is ignored in the computation of the ITM. The results of this simula-
tion (Figure 2.16) show a similar effect as for vetting packages: Because
some maintainers are highly influential, vetting a relatively small number
of maintainers can significantly reduce security risks. For example, vetting
around 140 maintainers cuts down the ITM in half, and vetting around
600 could even reduce ITM to less than five. These results show that this
mechanism scales reasonably well, but that hundreds of maintainers need
to be vetted to bring the average number of implicitly trusted maintainers
to a reasonable level. Moreover, two-factor authentication has its own risks,
e.g., when developers handle authentication tokens in an insecure way14 or
when attackers attempt to steal such tokens, as in the eslint-scope incident.

2.6 conclusions

In this chapter, we present a large-scale study of security threats resulting
from the densely connected structure of npm packages and maintainers.
The overall conclusion is that npm is a small world with high risks. It is
“small” in the sense that packages are densely connected via dependen-
cies. The security risk are “high” in the sense that vulnerable or malicious
code in a single package may affect thousands of others, and that a single
misbehaving maintainer, e.g., due to a compromised account, may have a
huge negative impact. These findings show that recent security incidents
in the npm ecosystem are likely to be the first signs of a larger problem,
and not only unfortunate individual cases. To mitigate the risks imposed
by the current situation, we analyze the potential effectiveness of several
mitigation strategies. We find that trusted maintainers and a code vetting
process for selected packages could significantly reduce current risks.

14 https://blog.npmjs.org/post/182015409750/automated-token-
revocation-for-when-you
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3
M I N I F I E D A N D O B F U S C AT E D C O D E O N T H E W E B

In this chapter we study how widespread code transformations (see par-
ticularity P3 in the introduction) are in real-world, client-side JavaScript
code. To that end, we propose a novel methodology based on unsuper-
vised machine learning models that can distinguish transformed code from
non-transformed code. While we limit the study to client-side JavaScript,
we believe a similar methodology can be used to analyze other parts of
full-stack JavaScript applications, i.e., the standalone server-side code or
the third-party code. This chapter shares material with the corresponding
publication [SSP19].

3.1 motivation

An effective way to hide the maliciousness of JavaScript code are code
transformations that preserve the overall behavior of a script while mak-
ing it harder to understand and analyze. Such transformations affect both
manual code inspection, e.g., because the code becomes harder to under-
stand, and automated code analysis, e.g., because the malicious behavior
is disguised as apparently harmless operations. There exist a variety of
code transformations, ranging from renaming of local variables to more
complex code changes that affect the control flow and data flow. We re-
fer to transformations aimed at reducing code size, typically by renaming
local variables to shorter names, as minification. In contrast, we refer to
more complex transformations aimed at hindering the understanding and
analysis of code as obfuscation. It is important to note that minification and
obfuscation may be used for legitimate reasons, such as reducing code
size or protecting intellectual property. However, independently of what
the reason for transforming code is, it affects the ability of human and
automated security analysis.

Despite the potential impact that minification and obfuscation may have
on security analysis, little is currently known about how real-world web-
sites use such transformations. A better understanding of what kinds of
code transformations are applied in the wild could guide future efforts
on making the web more secure. In particular, knowing how widespread
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minification and obfuscation are helps future analyses to focus on relevant
problems. Moreover, understanding what kinds of transformation tools are
the most popular enables the development of targeted defense techniques.
Unfortunately, to the best of our knowledge, there currently is no compre-
hensive study of code transformations in the web.

This chapter presents a large-scale empirical study of minification and
obfuscation in client-side web code. The study involves 967,149 JavaScript
files gathered from the top 100,000 websites. We analyze how many of
these scripts are transformed through minification and obfuscation, respec-
tively, and which tools are used for these transformations. Moreover, we
study which kinds of scripts are transformed particularly often and in-
spect the runtime behavior of some obfuscated scripts. Finally, we analyze
which costs code transformation may incur by assessing to what extent
popular transformation tools influence the performance and correctness of
JavaScript code.

Given the large-scale nature of our study, we rely, at least in parts, on
automation to answer the above questions. To this end, we present a neu-
ral network-based classifier that identifies JavaScript code with particular
properties. For example, the classifier can be trained to distinguish trans-
formed from non-transformed code, minified from obfuscated code, and
to identify code transformed with particular tools. We show that the classi-
fication has very high accuracy for these tasks, providing an effective way
to identify particular kinds of scripts across all studied websites.

The study addresses six research questions.
RQ1: How prevalent are minification and obfuscation in client-side JavaScript

code? Answering this question is important to determine whether code
transformations should be considered by security analyses at all, and what
kinds of transformations such analyses should focus on. We find that
code transformations are very widespread, affecting 38% of all client-side
scripts. The majority of the transformed code has been minified, whereas
less than 1% of all code is obfuscated. Even though the percentage of ob-
fuscated code is low, the absolute number of obfuscated scripts (2,842) still
motivates work on de-obfuscation, as these scripts arguably are the most
interesting for security analysis.

RQ2: Which tools are used to obfuscate code in the web? There is a variety of
tools available for obfuscating JavaScript code. Understanding which tools
and transformation techniques are used most often in practice helps prior-
itize efforts toward dealing with transformed code. Our study finds that
a single obfuscation tool accounts for most obfuscated scripts in the web:
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2,551 obfuscated scripts resemble the output of the Daft Logic Obfuscator,
an online tool that is available free of charge, motivating future work to
consider obfuscation techniques implemented by this tool.

RQ3: Does the prevalence of code transformations differ across different kinds
of scripts or websites? Since there are many possible reasons for minifying
and obfuscating code, it is interesting to ask whether specific kinds of
scripts are transformed more often than others. We find that third-party
scripts, i.e., code loaded from another website than the one visited by a
user, is about twice as likely to be transformed than scripts loaded from
the visited website. Possible reasons for this distribution include that con-
tent delivery networks minify libraries to reduce network traffic, and that
advertisement and tracking code is transformed to protected intellectual
property. Studying the prevalence of obfuscation in different categories of
websites shows that some categories, e.g., sites with adult content, contain
more obfuscated scripts than an average website.

RQ4: What kind of behavior do developers hide behind obfuscation? To further
understand the reasons for obfuscating code, we analyze the execution
behavior of obfuscated scripts and manually inspect a subset of them. We
find that many of the obfuscated scripts access APIs that are typically used
for tracking, fingerprinting, cookie syncing, or cookie theft. We also iden-
tify a script with an unusually high number of calls to performance.now,
which could be because the script is exploiting some timing channel.

The final two questions are about potential costs that applying code
transformations may incur.

RQ5: How do code transformations affect the performance of code? We find
that most obfuscation tools negatively affect performance, i.e., they slow
down the execution of the code. In contrast, most minification tools ei-
ther have no effect on performance or speed up the execution of the code.
These findings show that complex code transformations may come at a
non-negligible cost, motivating future work on performance-invariant ob-
fuscation.

RQ6: How do code transformations affect the correctness of code? Developers
applying an automated code transformation tool may naively assume that
the transformation preserves the overall semantics of the code. However,
we find that existing tools for both minification and obfuscation often pro-
duce corrupt code that behaves differently from the original code. Only
about half of the transformed code completely preserves the original se-
mantics, motivating future work on more reliable transformation tools.
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The results in this chapter are relevant for at least four groups of peo-
ple. First, the study provides insights for developers of security-related
program analyses, e.g., static malware checkers and de-obfuscators. In par-
ticular, we show that transformed code must be considered by any analysis
aimed at real-world, client-side JavaScript code, and we show what kinds
of transformations are the most important in practice. Second, the study
affects developers of obfuscation and minification tools by highlighting the
costs that using state-of-the-art tools imply. Third, the study informs users
of transformation tools about the effects that using such tools may have
on the performance and correctness of code. Finally, the classifier that we
develop to conduct our study enables researchers interested in analyzing
real-world JavaScript code to focus on code relevant for their research. For
example, the classifier can accurately identify obfuscated code among hun-
dreds of thousands of scripts.

In summary, this chapter contributes the following:

• The first large-scale study of minification and obfuscation in real-
world, client-side web application code.

• Insights about how code transformations are used in practice, includ-
ing evidence that minification is widespread, that more complex ob-
fuscation is rather rare yet non-negligible, and that particular obfus-
cation techniques clearly dominate.

• An automated classification technique that accurately identifies dif-
ferent kinds of transformed code. The technique is useful to select
particular scripts, e.g., those with obfuscated code, for further analy-
sis.

• A benchmark of obfuscated JavaScript files gathered from various
popular websites, which we make available for future work on de-
obfuscating, analyzing, and understanding obfuscated code.

3.2 classification of scripts

Addressing RQ1, RQ2, RQ3, and RQ4 at the scale of hundreds of thou-
sands of scripts requires an automated technique to determine whether
a script has been transformed, and if yes, in what way. While a skilled
human could manually label files with high accuracy, that approach does
not scale to the amount of JavaScript code considered in our study. One
approach to address this challenge would be to define a set of heuristics,
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e.g., based on idiosyncrasies of specific transformation tools, and to deter-
mine the properties of code based on these heuristics. Unfortunately, the
heuristics-based approach relies on human expertise for identifying code
properties that are unique to specific transformation techniques, and it can-
not be easily adapted to other transformation tools. Instead, we address
the challenge of determining properties of code through machine learning.
This section presents two machine learning-based approaches for classify-
ing JavaScript code. We use the more effective of the two approaches as
the basis of our study.

3.2.1 Classification Tasks

We address three classification tasks.

trans The first task, called TRANS, is to determine whether a given
piece of JavaScript code has been transformed by any minification or ob-
fuscation tool. We train classifiers for this task with examples of regular
code, which has not been processed by any transformation tool, and with
examples of transformed code, which has been processed by a minification
or obfuscation tool.

obfus The second task, called OBFUS, is to determine whether a given
piece of JavaScript code has been obfuscated. We train OBFUS classifiers
with examples of regular code, examples of minified but not obfuscated
code, and examples of obfuscated code.

tool-x The third task, called TOOL-X, is to determine for a given piece
of transformed JavaScript code what tool has been used to transform the
code. Because popular minification tools apply very similar transforma-
tions, we focus on obfuscation tools for this task.

3.2.2 Training Data for Learning Classifiers

To train the classifiers, we start with a set of human-written, or regular,
JavaScript files and then create transformed variants of these files.

45



3.2.2.1 Corpus of Regular Code

The regular code examples are a subset of a corpus of 150,000 JavaScript
files provided by others [Ray+16], which consists of human-written, non-
transformed code from open-source projects. We remove from this corpus
all files with a size less than 1kB, as they provide very little information for
the classifiers to make an informed decision, and files with a size greater
than 10kB, to keep the memory consumption during training at a manage-
able level.

3.2.2.2 Program Transformation Tools

Our study is based on popular minification and obfuscation tools. We se-
lect tools that are publicly available and widely used, as reported, e.g., by
publicly visible download numbers.

minification We consider seven minification tools (we use the names
in parentheses as abbreviation throughout the chapter): Google Closure
Compiler (closure), UglifyJS (uglify), babel-minify (babel), Matthias Mullie
Minify (mmminify), javascript-minifier.com (jsmincom), and YUI Compres-
sor (yui). These tools reduce the program size mainly by performing white
spaces reduction and identifiers shortening. In addition, some tools, e.g.,
closure, also perform optimizations, such as inlining or constant folding.

obfuscation We consider five obfuscation tools: javascript-obfuscator
(jsobf), javascriptobfuscator.com (jsobfcom), jfogs, JSObfu, and DaftLogic
Obfuscator (daft-logic). The result of our tool search also included JSFuck
and javascript2img.com, but we exclude them as they either are unable
to process large code files or produce invalid JavaScript code. Table 3.1
shows which transformation techniques the tools use, as reported in previ-
ous work and in the tool’s documentation. The two most common obfusca-
tion techniques are identifier encoding, usually using HEX encoding, and
storing strings in a global array.

configurations Most tools provide options to configure which trans-
formation techniques to apply. Since different configurations may result in
a different transformed code, we use multiple configurations for each tool.
In total, we consider 15 configurations for the obfuscation tools and 31 con-
figurations for the minification tools. Together with the regular version of
a JavaScript file, this setup yields 47 variants of each file.
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Transformation techniques Obfuscation tools

js
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String splitting X X

Keyword substitution

String concatenation X

Encoding the entire code X

Encrypting the entire code

Identifier encoding X X X X X

String encoding X X X

Dead code injection X

Control flow flattening X

String array X X X X

Code protecting techniques X

Table 3.1: Obfuscation tools and transformation techniques.

3.2.2.3 Generation of Training Data

As training data for a specific classifier, we randomly sample 10,000 files
from the corpus of regular files and apply transformations tools to these
files. For all three tasks, we train the classifiers with an even split of two
classes of code, i.e., half of the training examples are expected to be clas-
sified as positive and negative, respectively. For the TRANS classifier, we
apply the minification and obfuscation tools to each code example, using
each tool equally often. For the OBFUS classifier, we obtain examples of
obfuscated code by applying one of the obfuscation tools to each code ex-
ample, using each tool equally often. To obtain examples of non-obfuscated
code, we use regular and minified code. Since OBFUS gets trained to dis-
tinguish obfuscated code from both minified code and regular code, it can
be used not only to identify obfuscated code among any code, but also
to classify transformed code into minified versus obfuscated code. For the
TOOL-X classifiers, we use examples of code transformed by tool X and
code examples that are either not transformed or transformed by other
tools.
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3.2.3 Classification via Identifier Frequencies

The following describes the first of two approaches to learn classifiers. The
approach exploits the fact that both minification and obfuscation tools re-
place the original identifiers, e.g., names of local variables, with other iden-
tifiers. Because many transformation tools use specific identifiers, a skilled
human can determine whether a tool has been used and if yes, which tool.
The learning approach is based on this observation.

The approach consists of two main steps. The first step is to extract a
feature vector for a given JavaScript file. The feature vector summarizes
what identifier names occur in the file and how frequent each name is.
To this end, we tokenize the code and extract all identifiers. Based on all
identifiers that occur in the training data, we determine a vocabulary of
the 30,000 most common identifiers. Then, we transform each script into
a feature vector of length 30,000, where each element represents a specific
identifier. The element that represents a specific identifier is the tf-idf value
of the identifier, i.e., the result of multiplying the term frequency with the
inverted document frequency of an identifier. To compute the term frequency
for a given script, we count the occurrences of each identifier and normal-
ize these with the number of occurrences of the most frequent identifier
in the script. For the inverted document frequency we divide, for each
identifier, the total number of scripts in the training dataset by the num-
ber of scripts that contain the identifier and compute the logarithm of the
resulting value.

The second step is to classify the feature vector of a JavaScript file using
a support vector machine (SVM). We use SVMs because they are effective
for binary classification problems. We achieve the best results for the SVM
when using the radial basis function kernel and setting the penalty term C
to 5. The classifier is implemented in Python using the machine learning
library scikit-learn1.

3.2.4 Classification via AST Convolution

The identifier-based classifier described above is conceptually simple but
limited to a single feature of source code, i.e., identifier names. Our second
classification approach addresses this limitation through a neural network
that classifies abstract syntax trees (ASTs). ASTs are a useful representa-
tion of code because they preserve all relevant information while mak-

1 http://scikit-learn.org/stable
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Figure 3.1: Tree-based convolutional neural network [Mou+16]. Rectangles with
dots are vector representations of AST nodes; triangles represent
trees.

ing the structural relationships between code elements explicit. To classify
ASTs, we build upon a neural network architecture proposed by Mou et
al. [Mou+16]. We adapt their approach by enriching traditional ASTs with
additional information that proves useful for our classification tasks.

3.2.4.1 Background: Tree-based Convolutional Neural Network

We build upon an existing machine learning architecture for classifying
trees, e.g., ASTs, based on a convolutional neural network. The network
transforms a given tree into a continuous vector representation and then
performs the actual classification task on the vector representation. The
vector representation is learned in such a way that similar trees are rep-
resented by similar vectors. Figure 3.1 shows the five main steps involved
in classifying trees. First, each node is transformed into a vector, where
nodes with the same label, e.g., two CallExpression nodes, are mapped to
the same vector. Second, a neural network layer (“coding layer”) summa-
rizes the children of a node and the node itself into the parent’s vector.
Third, several convolution layers extract features from the tree by sliding a
feature detector over fixed-depth subtrees of the tree, which yields several
trees of features. Fourth, a pooling layer summarizes these trees of fea-
tures into a single tree again. Finally, all nodes of the new tree are passed
through a fully connected hidden layer that outputs the classification result.
During training with stochastic gradient descent, the parameters of the net-
work are adapted to minimize a loss function that expresses how much the
network’s classification differs from the expected classification. Our imple-
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mentation of the tree-based convolutional neural network is based on an
implementation by Creston Bunch2. The architecture has previously been
shown to be effective for identifying code that implements a particular al-
gorithm [Mou+16]. We are the first to use it for identifying minified and
obfuscated code.

3.2.4.2 Enriched ASTs

One possible approach is to apply the neural network to standard, out-of-
the-box JavaScript ASTs. During initial experiments, we find this approach
to provide a classifier with promising yet not fully satisfying accuracy. In
particular, the classifiers struggle to learn from two features that are useful
for a human but not well represented in standard ASTs: whitespace and
specific properties of identifier names. Motivated by this observation, we
enrich the standard JavaScript ASTs in two ways.

whitespace The first enrichment is to add information about whites-
pace into ASTs. Usually, this information is abstracted away as it is irrele-
vant for most scenarios where ASTs are used. To recognize minified and
obfuscated code, though, whitespace is relevant because both minification
and obfuscation tools often remove all or at least some whitespace. We en-
rich ASTs with whitespace information as follows: Whenever two nodes in
the AST correspond to successive elements in the source code, we check
whether any whitespace exists between the two code elements. If no such
whitespace exists, then we insert a new “no whitespace” node between the
two adjacent nodes; otherwise, we leave the nodes unchanged.

length of identifiers The second enrichment of ASTs is to add in-
formation about the length of identifiers, i.e., the number of characters of
an identifier name. The motivation is that several obfuscation tools replace
identifiers with less understandable identifiers of a fixed length that dif-
fers from tool to tool. In contrast, regular code usually consists of natural
identifiers that have variable lengths. We encode this information by mod-
ifying every “Identifier” AST node by appending the length of the identi-
fier to the node label, e.g., “Identifier3” for an identifier foo. To deal with
unusually long identifiers, any length exceeding 30 characters is simply
represented by a single, special label.

2 https://github.com/crestonbunch/tbcnn
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Classifier Task

TRANS OBFUS TOOL-X

Identifier frequencies 76.40% 80.07% 64.44%–82.86%

AST convolution 95.06% 99.96% 99.68–100.00%

Table 3.2: Testing accuracies for different classifiers and classification tasks.

3.2.5 Accuracy of Classifiers

To decide which of the two classifiers to use for the study, we measure
their classification accuracy on previously unseen sets of validation data.
To this end, we randomly select 2,500 files from the non-transformed code
(disjoint from the files used for generating training data), and create trans-
formed variants of them, as described in Section 3.2.2.3. We then measure
the accuracy for each classifier and task, i.e., the percentage of predictions
that match the expected classification.

Table 3.2 summarizes the accuracy results for the two classifiers pre-
sented in Sections 3.2.3 and 3.2.4. Overall, the results show that both clas-
sifiers are effective (for comparison, a random decision would achieve 50%
accuracy) and that the AST convolution-based classifier has the by far high-
est accuracy for all three tasks. In particular, the AST convolution-based
classifier achieves more than 95% accuracy for all three tasks, and at least
99.68% accuracy for the OBFUS and TOOL-X tasks. In contrast, the classi-
fier based on identifier frequencies performs poorly for some of the TOOL-
X tasks, with an accuracy as low as 64.44% for one of the obfuscation tools.

To better understand why one classifier performs better than the other,
we check how many of the different kinds of training examples the classi-
fiers identify correctly. We find that the identifier frequency-based classifier
is successful at identifying minified and obfuscated code but often fails to
correctly identify regular code. For example, for the OBFUS task, the clas-
sifier correctly labels 99.92% of all obfuscated examples, but classifies only
59.47% of all non-obfuscated examples correctly. A detailed analysis of the
identifiers that occur in obfuscated and non-obfuscated code explains these
results: Many obfuscation tools use very characteristic identifiers, whereas
regular code contains a wide range of natural identifiers. For example,
jfogs creates many variables names $fog$ followed by some number, and
jsobf uses a similar pattern but also hex-encodes the identifiers.
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To validate that enriching AST is beneficial over running the neural net-
work on default JavaScript ASTs, we compare the accuracies of both vari-
ants of the AST-based classifier. We find that the default ASTs yield sig-
nificantly lower accuracies than the enriched ASTs. For example, for the
OBFUS task, the default ASTs give only 75.43% accuracy, which is not only
much lower than with enriched ASTs but also lower than the classifier
based on identifier frequencies.

Overall, we conclude from the accuracy results that the AST convolution-
based classifier is highly effective at identifying transformed code, obfus-
cated code, and code obfuscated with a particular tool, making it a solid
basis for studying JavaScript code at a large scale.

3.3 studying deployed client-side code

Based on the classifiers described above, this section presents the setup and
results of our study of minification and obfuscation in deployed, client-side
JavaScript code.

3.3.1 Study Data: Deployed, Client-Side JavaScript Code

To gather a representative set of JavaScript code used in real-world web-
sites, we crawl the top 100,000 most popular websites, as listed by the Ma-
jestic Million3 service. Our crawler visits each website, waits five seconds
to enable dynamically loaded code to arrive, and then saves all scripts. We
consider both code loaded via .js files and code loaded via inline scripts,
i.e., via <script> tags without a src attribute. For the latter, the crawler
copies the code between the tags into a new file. To speed up the loading
of websites, we do not fetch resources other than scripts and HTML code.

The crawling yields 2,335,207 scripts from 85,001 websites in total. 14,999

websites are not accessible due to timeout errors and other reasons. Due to
the limited size of ASTs that the classifiers can handle in reasonable time,
we remove scripts with a size exceeding 40kB. This results in 1,861,489

scripts. We further remove scripts that are smaller than 512 bytes because
we observe that such small scripts are hard to classify even for human
subjects due to the limited number of clues that can aid the distinction be-
tween transformed and original scripts. Finally, we remove all those scripts
for which the AST does not contain at least one "CallExpression" node. This
is because such scripts are very often just configuration files in the JSON

3 https://de.majestic.com/reports/majestic-million
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format. Applying these filters yields a set of 967,149 scripts. However, dif-
ferent websites may use the same JavaScript code, e.g., third-party libraries,
thus the set of scripts contains duplicate files. In this study we are mostly
concerned with the nature of the code on the web and not so much with
its frequency on different websites, hence we remove all duplicates. This
filtering leaves a final set of 424,023 unique JavaScript files, which we use
for the study.

3.3.2 Accuracy of Classifiers on Study Data

Section 3.2.2.2 has established that our classifiers are highly accurate on
code transformed by the tools used to generate the training data. To val-
idate that the classifiers are effective also on the study data, for which
we do not know which (if any) tools have been used, and to validate that
the classification results match the classification that a skilled human could
produce, we perform an experiment with JavaScript developers. The exper-
iment involves five advanced developers, who have extensive experience
in writing JavaScript and in understanding real-world JavaScript code.

The goal of the experiment is to gather ground truth to compare our clas-
sifiers against. During the experiment, each developer performs two tasks,
which validate the TRANS and OBFUS classifiers, respectively. First, to val-
idate the TRANS classifier, we show to each developer 50 scripts labeled by
the classifier as transformed and 50 scripts labeled by the classifier as not
transformed. We randomly sample the scripts from all 424,023 scripts in
the study data. For each script, the developers are asked to answer the fol-
lowing question: “Is this human-written or generated/transformed code?”
Second, to validate the OBFUS classifier, we repeat the same setup with
50 scripts labeled as obfuscated by the classifier and 50 scripts labeled as
not obfuscated by the classifier. For these scripts, the developers are asked
to answer the question: “Is this obfuscated or not obfuscated code? If the
file is transformed but you are not sure if it is obfuscated, try to decide
whether the developer transformed it for hindering understanding.” To
avoid any influence from file names, such as “jquery.min.js”, we hide the
original file names from the developers and assign some generic names to
the files.

After aggregating the results of the experiment, we compute the inter-
rater agreement, which quantifies the extent to which the participants
agree with each other. More precisely, we compute Cohen’s kappa for each
pair of participants. The pairwise agreement ranges between 0.64 and 0.93,
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Obfuscated

Transformed

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

True negatives False negatives Gray area negatives
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Figure 3.2: Effectiveness of the TRANS and OBFUS classifiers judged against the
ground truth obtained from experienced JavaScript developers. The
gray area depicts scripts for which the developers did not agree on
the classification label.

with an average of 0.81, which is considered a very high agreement. To ac-
count for possible mistakes made by individual developers, we consider a
4-out-of-5 majority vote. That is, if at least four of the developers agree on
whether a given script is transformed/obfuscated, then we consider this
decision as the ground truth. If no such majority is reached, then we con-
sider the scripts to be in a gray area, where even humans have a hard time
judging whether the script has been transformed/obfuscated.

Figure 3.2 shows the results of the developer experiment. The blue area
depicts true positives, i.e., scripts where the classifier and the developers
agree on the scripts being transformed/obfuscated. Likewise, the orange
area depicts true negatives, i.e., scripts where the classifier and the de-
velopers agree on the scripts being not transformed/obfuscated. Overall,
the automated classifiers largely match the decisions by the developers.
In addition, the TRANS classifier has 13% false negatives, i.e., it misses
a few scripts that developers consider to be transformed, and the OBFUS
classifier has 2% false positives, i.e., it sometimes incorrectly labels a non-
obfuscated script as obfuscated. The gray parts in the middle of the figure,
six scripts for TRANS and one for OBFUS, are the gray area, where the
developers disagreed with each other.

Overall, we conclude from the experiment with developers that our au-
tomated classifiers match human classifications for the overwhelming ma-
jority of scripts. Given the 13% false negative rate of TRANS, one should
interpret our results about the number of transformed scripts as a slight
under-approximation of the actual number.
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TRANS on all scripts: Regular 61.5%

Transformed 38.5%

OBFUS on all scripts: Regular or minified 99.33%

Obfuscated 0.67%

OBFUS on transformed scripts: Minified 98.31%

Obfuscated 1.69%

Table 3.3: Prevalence of transformed code.

3.3.3 RQ1. Prevalence of Transformed Code

To address the question of how prevalent minified and obfuscated code is
in client-side JavaScript code, we classify all downloaded scripts using the
TRANS and OBFUS classifiers. Table 3.3 summarizes the results. We find
that 38.5% of all scripts have gone through some kind of transformation,
including both minification and obfuscation. In contrast, only 0.67% of all
scripts (2,842 scripts) have been obfuscated. Applying the OBFUS classifier
to those scripts that are classified as transformed confirms the above num-
bers: The vast majority of transformed scripts are not obfuscated, i.e., they
have only been minified. These numbers show that minification is popu-
lar in the web. This finding is in line with the fact that many JavaScript
libraries and frameworks include a minification step in their deployment
pipeline to reduce the file size and hence the transmission time. A possible
explanation for the low number of obfuscated scripts is that obfuscation
comes at a cost (discussed in detail in Section 3.3.7 and 3.3.8), and there-
fore it is used only when developers want to hide some behavior. Despite
the surprisingly low number of obfuscated scripts, these scripts provide
an interesting target for further analysis, and we provide them as a bench-
mark for future work.4

3.3.4 RQ2. Prevalence of Obfuscation Tools

Given the non-negligible number of obfuscated scripts, we next address
the question which tools and techniques developers use for obfuscation.
Table 3.4 shows for each tool X how many scripts are detected as obfus-
cated by this tool according to the corresponding TOOL-X classifier. The
by far most popular obfuscator in the web is DaftLogic Obfuscator, with

4 http://software-lab.org/projects/obfuscation_study.html
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Classifier
% detected

scripts
% other
scripts

# detected
scripts

TOOL-JSObfu 0.01% 99.99% 3

TOOL-jsobfcom 0.04% 99.96% 149

TOOL-jfogs 0.02% 99.98% 0

TOOL-daft-logic 0.60% 99.40% 2,551

TOOL-jsobf 0.02% 99.98% 71

Table 3.4: Tools used to obfuscate scripts.

Pair of classifiers Number of scripts

TOOL-jsobfcom ∩ OBFUS 147 (98% of TOOL-jsobfcom)

TOOL-daft-logic ∩ OBFUS 2,474 (97% of TOOL-daft-logic)

TOOL-jsobf ∩ OBFUS 71 (100% of TOOL-jsobf)

Table 3.5: Overlap between different classifiers.

2,551 scripts in total. As the only tool that encodes the entire code us-
ing the eval function, it clearly stands out among the other tools. The
study data does not contain any scripts obfuscated with jfogs. A surpris-
ing fact from these results is that the apparent popularity on npm of tools
like javascript-obfuscator and JSObfu does not transfer to client-side obfus-
cated code. One reason may be that these obfuscators are more popular for
JavaScript code running on Node.js than for client-side code.

Having a set of classifiers related to obfuscation (OBFUS and several
TOOL-X classifiers) raises the question to what extent the scripts detected
by these classifiers overlap. Table 3.5 shows the overlap of scripts identified
by the different obfuscation-related classifiers. We can make three observa-
tions. First, the TOOL-X classifiers do not overlap with each other, i.e., each
of them precisely identifies scripts originating from a specific tool. This re-
sult is particularly remarkable for javascriptobfuscator.com and javascript-
obfuscator, as these tools share a list of common obfuscation techniques.
Second, almost all scripts detected as obfuscated by a specific tool are also
detected as obfuscated by the general OBFUS classifier. Third, some scripts
are classified as obfuscated but none of our TOOL-X classifiers can identify
the tool used for obfuscating them.
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Figure 3.3: Prevalence of obfuscated code within categories of websites. In
parenthesis on the x-axis we show the number of scripts in each
category.

3.3.5 RQ3. Transformations vs. Kinds of Scripts

3.3.5.1 Categories of Scripts

We associate scripts with website categories, such as “News”, “Travel”, and
“Education”. To this end, we use the Juniper Test-a-Site5

service, which yields a category for a given URL. We associate a category
with a script based on the top-level domain from which the script was
loaded.

obfuscated code We first analyze the prevalence of obfuscated code
loaded by websites in specific categories. Figure 3.3 shows for ten of the
categories the percentage of obfuscated scripts among all scripts loaded by
a site and an additional entry with the average across all other categories.
The results show that the prevalence of obfuscation differs significantly
across website categories. Categories with a particularly high percentage
of obfuscated scripts include “Adult/Sexually Explicit” and “Glamour &
Intimate Apparel”, i.e., sites with content that careful users may trust less
than an average website.

transformed code Figure 3.4 shows the ratio between transformed
and regular code within all script categories in the study data. The per-

5 http://mtas.surfcontrol.com/mtas/JuniperTest-a-Site.asp
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Figure 3.4: Prevalence of transformed code within categories of websites. In
parenthesis on the x-axis we show the number of scripts in each
category.

centage of transformed code ranges between 28% and 73%. The most sig-
nificant categories are “Search engines” with 71.7% transformed code and
“Advertisements” with 73.7%. We hypothesize that this is the case because
websites in these categories serve scripts to many other domains, e.g. track-
ing scripts, and the size of the delivered scripts has a direct impact in the
cost of using these services.

3.3.5.2 Third-party Scripts

The following studies whether transformations are particularly common
for scripts loaded from third-party sites. As first-party scripts, we con-
sider all inline scripts and all scripts loaded from the top-level domain of
the visited website itself. All remaining scripts are considered third-party
scripts.6 Based on this grouping of scripts, we analyze how the results of
the TRANS and OBFUS classifiers relate to where a script is loaded from.

We find that third-party scripts, with a percentage of 55.38%, are almost
twice as frequently transformed than scripts loaded directly from the vis-
ited website, which have a percentage of only 30.18% transformed code.
These findings seem natural because providers of third-party scripts, e.g.,
content-delivery networks, often provide a minified version to reduce load-

6 This classification may be wrong for websites that split their files across multiple top-level
domains. Finding more accurate ways to identify third-party scripts is left for future work.
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ing time. For scripts labeled as obfuscated, we do not find a significant
difference between third-party and first-party scripts.

3.3.6 RQ4. Runtime Behavior of Obfuscated Code

To better understand what the obfuscated scripts actually do, we run them
in a custom environment and observe what APIs they try to access. The
custom environment consists of self-replicating proxy objects that emu-
late the browser APIs and other well-known frameworks required by the
analyzed scripts. For example, we create a globally accessible document
proxy object that returns another proxy each time one of its properties is
accessed. This environment provides a simple and effective technique for
inspecting the behavior of obfuscated scripts.

In total, we analyze 2,924 unique obfuscated scripts which include all
scripts classified as obfuscated by either OBFUS or one of the TOOL-X
classifiers. We use 13 self-replicating proxies to mock the browser API and
we run our analysis in Node.js. After each run, we collect a trace summa-
rizing the property writes, property reads, and function calls observed via
the proxies. In total, we collect 3.6 million property accesses, 10,400 writes
and 1.4 million function calls. 2,231 scripts access at least one property
via the proxies and 1,263 scripts set globally accessible properties. These
numbers show that our setup is effective at running the obfuscated scripts
and at extracting meaningful information about the APIs they call and the
properties they access.

Out of the 2,924 analyzed scripts, 341 access the cookie object, 316

the userAgent, 287 the location and 101 the referrer. These are all
privacy-sensitive APIs that may be accessed to perform cookie theft, cookie
syncing, referrer sniffing, or browser fingerprinting. However, a more de-
tailed analysis is needed to confirm this hypothesis. The most frequently in-
voked method is by far document.createElement, used by 346 scripts.
This means that in order to fully understand a given obfuscated script, an
analysis needs to reason about the HTML code injected in the page, which
seem to be a popular idiom. Moreover, we observe that 295 scripts call
document.createElement(’script’), i.e., inject code at runtime, a
technique commonly used by malware.

We manually inspect some of the traces and find two security-relevant
behavioral patterns. First, several traces contain various API calls known to
be used for browser fingerprinting, such as window.devicePixelRatio,
navigator.plugins, screen.width or screen.colorDepth. There
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is even a trace in which after multiple such property accesses, a call to
document.createElement(’img’) is made, which suggests that the
obfuscated script is sending this information over the network. The second
interesting case is of a trace containing a total of 336,000 invocations to
performance.now, which is likely to be part of a timing attack.

An additional observation we make after our sampling-based manual
analysis is that some scripts set global properties, such as SHA256_init,
jQueryPath, mtTracking or Fingerprint2. Their names suggest that
some of the scripts register benign functionality, such as SHA hash func-
tions or jQuery, while others register tracking and fingerprinting function-
ality.

3.3.7 RQ5. Performance of Transformed Code

Code transformations may not only influence the understandability of
code but also its efficiency. To better understand the cost-benefit trade-
off of transformations, we study to what extent transformations affect the
performance of code.

3.3.7.1 Benchmarks

Addressing RQ5 and RQ6 requires JavaScript code for which we can mea-
sure both the performance and the correctness. For this purpose, we gather
a set of popular client-side JavaScript libraries that have extensive test
suites. These tests include assertions to check the correctness of execution
behavior, and they provide a reliable way to measure the execution time of
code. Table 3.6 presents the ten libraries we consider, along with the num-
ber of tests they provide. All libraries are frequently used in client-side
web applications. We execute their unit tests on Node.js, though, because
it facilitates the performance measurements, as they are not influenced by
opening and initializing a browser.

To study how transformations affect the performance and correctness
of the libraries, we apply all 46 transformations (Section 3.2.2.2) to each
library. To measure the performance of a given, possibly transformed, li-
brary, we execute its test suite 20 times and measure the overall wall-clock
time of each execution. We do not perform a separate warm-up phase
before measuring performance, as is common for longer-running bench-
marks, to include the time for parsing code into our measurements, as this
time affects the user experience on websites. Since closure injects code that
is not compatible with our environment and prevents us from running the
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Library Category Number of tests

Bacon Reactive programming 7,492

async Asynchronous programming 513

immutable Immutable data structures 557

lodash General utility 6,685

math Math utility 4,063

moment Date utility 3,232

ramda Functional programming 954

underscore General utility 1,569

voca String utility 409

when Promise implementation 872

Table 3.6: Libraries used to measure performance and correctness.

library tests, we omit this transformation tool for RQ5 and RQ6. We run
all our performance and correctness measurements on an AMD Phenom
II X6 1100T CPU with 16GB of RAM.

3.3.7.2 Results

Figure 3.5 shows the execution time of transformed code relatively to reg-
ular code for eleven different transformation tools. The figure presents re-
sults from the ten libraries listed in Section 3.3.7.1. Each data point shows
the average execution time across 20 repetitions and the 95% confidence
interval. The first six columns of data points are for minification tools,
whereas the following four columns are for obfuscation tools. The last col-
umn shows the baseline, i.e. the performance of the original code.

For minification, the figure shows an overall improvement of efficiency.
In particular, for two libraries, voca and math, minification causes perfor-
mance improvements of over 20% and 8%, respectively. For most of the
other libraries, minification causes a measurable but small performance
improvement.

In contrast to minification, we observe an overall performance degra-
dation after obfuscating code. For at least four libraries (ramda, moment,
math, and Bacon), obfuscation significantly increases the execution time,
with average increases between 16% to 37%. For eight out of the ten li-
braries, the obfuscated code is measurably slower than the regular code.
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Figure 3.5: Execution time of transformed code relative to regular code. Each
data point shows the average across 20 repetitions and the 95% con-
fidence interval (which is too small to be visible for most libraries).

The only outlier is voca, which executes faster for two of the applied ob-
fuscation tools.

3.3.8 RQ6. Correctness of Transformed Code

Besides affecting the performance of code, there is another potential cost
of applying code transformations: the impact of transformations on the
correctness of the code. To assess this impact, we run the test suites of the
benchmarks from Section 3.3.7.1 before and after applying different trans-
formations and measure the percentage of tests that still succeed after the
transformation. We say that transformed code is correct if this percentage
is 100%, i.e., the transformed code passes all tests.

Figure 3.6 shows the percentage of correct code among all code trans-
formed with a specific tool. Overall, only about 70% of the minified code
is correct, and even worse, less than 50% of the obfuscated code is correct.
The original code, shown in the right-most column, is by definition 100%
correct. A manual analysis of transformed code that fails test cases shows
two root causes. First, some transformation tools have implementation-
level bugs that get triggered by some code to be transformed. For ex-
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Figure 3.6: Percentage of correct code among all code transformed by a specific
tool.

ample, JSObfu, which consistently creates invalid code, extensively uses
the String.fromCharCode() method to encode constant string occur-
ring in the code. However, in some cases the method is applied on an
undefined object instead of a string, which causes an exception. Second,
some transformation tools change the semantics of code in ways that affect
rather subtle corner-cases of the JavaScript language. For example, some
configurations of UglifyJS replace non-global function names with short
and meaningless names. If such a function is a constructor function, this
transformation affects code that creates an object with this function and
then checks the name of the constructor using JavaScript’s reflection APIs.
Some of the tests trigger this corner case, e.g., a test of the “immutable”
benchmark checks whether objects of type Record have a constructor with
the same name.

We conclude from these results that transformation tools may not only
impose a performance cost, but even worse, risk to change the seman-
tics of code. A practical take-away from this finding is that users of such
tools must carefully check the correctness of transformed code, instead of
blindly relying on the transformation tool. Our results also motivates fu-
ture work on validating and improving minification and obfuscation tools,
e.g., through automated testing.
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3.4 conclusions

This chapter presents the first large-scale study of minified and obfuscated
JavaScript in client-side website applications. Our study leads to several
findings that should be of interest for both the web community and the
security community. In particular, we show that transformed code is sur-
prisingly common, whereas obfuscation aimed at hindering understand-
ing remains an exception. Yet, there is a non-negligible number of ob-
fuscated scripts, which typically occur in specific website categories and
which sometimes expose security-relevant behavior, e.g., fingerprinting or
timing attacks. Moreover, we show that obfuscation not only provides ben-
efits to its users but also imposes a cost by negatively impacting both the
performance and the correctness of the code. Besides these findings we
are releasing the obfuscated code detected during the study to stimulate
future research in this area.

64



Part II

Vulnerabilities and Attacks
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4
I N J E C T I O N V U L N E R A B I L I T I E S O N T H E S E RV E R - S I D E

In this chapter we present injection vulnerabilities in Node.js, a class of
vulnerabilities that has more serious implications in the server-side than
on the client-side due to the novel threat model (see particularity P1 in the
introduction). Once again, we concentrate on libraries, but our findings
have direct implications for the security of full-stack web applications. This
chapter shares material with the corresponding publication [SPL18].

4.1 motivation

As mentioned in the introduction, JavaScript has recently become increas-
ingly popular for platforms beyond the browser: server-side and desktop
applications that use Node.js, mobile programming (Apache Cordova/-
PhoneGap); it is even used for writing operating systems, such as Firefox
OS. One of the forces behind using JavaScript in other domains is to enable
client-side programmers to reuse their skills in other environments.

Unfortunately, this skill transfer also spreads the risk of misusing the lan-
guage in a way that threatens software security. One example of this is bad
programming habits of client-side JavaScript, such as the widespread use
of the eval construct [Ric+11], spreading to the emerging platforms. Ad-
ditionally, new types of vulnerabilities and attacks become possible, which
do not directly map to problems known in the client-side domain. For ex-
ample, recent work shows that mobile applications written in JavaScript
contain injection vulnerabilities [Jin+14] and that the impact of attacks
in mobile applications is potentially more serious than that of client-side
cross-site scripting (XSS). Others have shown how perilous the use of dan-
gerous and outdated JavaScript APIs can be [Lau+17]. Companies like the
Node Security Platform1 and Snyk2 are maintaining vulnerability data for
platforms that include Node.js and Ruby Gems, underlining the impor-
tance of these issues, but do no provide actionable prevention strategies.

This chapter presents the first work to thoroughly investigate a security
issue specific to JavaScript executed on the Node.js platform. Specifically,

1 https://nodesecurity.io/
2 https://snyk.io/
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we focus on injection vulnerabilities, i.e., programming errors that enable
an attacker to inject and execute malicious code in an unintended way.
Injection vulnerabilities on the Node.js platform differ from those on other
JavaScript platforms in three significant ways.

1) Injection APIs and impact of attacks: Node.js provides two families of
APIs that may accidentally enable injections. The eval API and its vari-
ants take a string argument and interpret it as JavaScript code, allowing
an attacker to execute arbitrary code in the context of the current applica-
tion. The exec API and its variants take a string argument and interpret it
as a shell command, giving the attacker access to system-level commands,
beyond the context of the current application. Moreover, attackers may
combine both APIs by injecting JavaScript code via eval, which then uses
exec to execute shell commands. Because of these two APIs, and because
Node.js lacks the security sandbox of the web browser, injection vulnera-
bilities in Node.js can cause significantly more harm than in the browser,
e.g., by modifying the local file system or even taking over the entire ma-
chine.

2) Developer stance: While it is tempting for researchers to propose an
analysis that identifies vulnerabilities as a solution, to have longer-range
impact, it helps to understand Node.js security more holistically. By an-
alyzing security issues reported in the past and through developer inter-
actions, we observe that, while injection vulnerabilities are indeed an im-
portant problem, developers who use and maintain JavaScript libraries are
generally reluctant to use analysis tools and are not always willing to fix
their code.

To better understand the attitude of Node.js module developers toward
potential injection flaws, we submitted a sample of 20 bug reports to devel-
opers on GitHub. Somewhat to our surprise, only about half the reports
were attended to and only a small fraction was fixed (the results of this
experiment are detailed in Figure 4.4). To understand the situation further,
we reviewed many cases of the use of eval and exec, to discover that
most (80%) could be easily refactored by hand, eliminating the risk of in-
jections [Mea+12]. These observations suggest that even given the right
analysis tool, it is unlikely that developers will proceed to voluntarily fix
potential vulnerabilities.

3) Blame game: A dynamic we have seen developing is a blame game be-
tween Node.js module maintainers and developers who use these mod-
ules, where each party tries to claim that the other is responsible for check-
ing untrusted input. Furthermore, while an individual developer can find
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it tempting to deploy a local fix to a vulnerable module, this patch is likely
to be made obsolete or will simply be overwritten by the next module
update. These observations motivated us to develop an approach that pro-
vides a high level of security with a very small amount of developer in-
volvement.

The main contribution of this chapter is to present a study of injection
vulnerabilities in 235,850 Node.js modules, focusing on why and how de-
velopers use potentially dangerous APIs and whether developers appear
open to using tools to avoid these APIs.

4.2 background and example

Injection APIs in Node.js: The Node.js platform provides two families
of APIs that may allow an attacker to inject unexpected code, which we
call injection APIs. First, exec enables command injections if an attacker
can influence the string given to exec, because this string is interpreted as
a shell command. The exec API has been introduced by Node.js and is
not available in browsers. Second, calling eval enables code injections if
an attacker can influence the string passed to eval, because this string is
interpreted as JavaScript code. Since code injected via eval may contain
calls to exec, any code injection vulnerability is also a command injec-
tion vulnerability. The latter distinguishes server-side JavaScript from the
widely studied client-side problems of eval [Ric+11] and introduces an
additional security threat. In this chapter, we focus on exec and eval, as
these are the most prominent members of the two families of APIs. Extend-
ing both the study in this chapter and our mitigation mechanism in Chap-
ter 7 to more APIs, e.g., new Function() or modules, e.g., shelljs is
straightforward. Moreover, the approach can also be applied with minimal
effort to other types of security vulnerabilities, e.g. SQL injections and path
traversals.

In contrast to the browser platform, Node.js does not provide a security
sandbox that controls how JavaScript code interacts with the underlying
operating system. Instead, Node.js code has direct access to the file sys-
tem, network resources, and any other operating system-level resources
provided to processes. As a result, injections are among the most serious
security threats on Node.js, as evidenced by the Node Security Platform3,
where, at the time of writing, 20 out of 66 published security advisories
address injection vulnerabilities.

3 https://nodesecurity.io/advisories/
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1 function backupFile(name, ext) {
2 var cmd = [];
3 cmd.push("cp");
4 cmd.push(name + "." + ext);
5 cmd.push("~/.localBackup/");
6
7 exec(cmd.join(" "));
8
9 var kind = (ext === "jpg") ? "pics" : "other";
10 console.log(eval("messages.backup_" + kind));
11 }

Figure 4.1: Motivating example.

Module system: As discussed in Chapter 2, code for Node.js is distributed
and managed via the npm module system. A module typically relies on
various other modules, which are automatically installed when installing
the module. There is no mechanism built into npm to specify or check
security properties of third-party modules before installation.

Motivating example: Figure 4.1 shows a motivating example that we use
throughout this chapter to illustrate the problem and in Chapter 7 for
presenting a defense mechanism against injections. The function receives
two parameters from an unknown source and uses them to copy a file
on the local file system. The parameters are intended to represent a file
name and a file extension, respectively. To copy the file, lines 2 to 5 con-
struct a string that is passed as a command to exec (line 7), which will
execute a shell command. The code also logs a message to the console.
Line 10 retrieves the content of the message by looking up a property of
the messages object. The property and the message depend on the exten-
sion of the backed up file. Implementing a lookup of a dynamically com-
puted property with eval is a well-known misuse of eval that frequently
occurs in practice [Ric+11]. For example, suppose the function is called
with backupFile("f", "txt"). In this case, the command will be cp
f.txt ~/.localBackup and the logged message will be the message
stored in messages.backup_other.

The example contains two calls to APIs that may allow for injecting code
(lines 7 and 10). As an example for an injection attack, let us consider the
following call:

backupFile("-help && rm -rf * && echo ", "")
The dynamically constructed command will be:

cp -help && rm -rf * && echo . ~/.localBackup/
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Unfortunately, this command does not backup any files but instead it cre-
ates space for future backups by deleting all files in the current directory.
Such severe consequences distinguish the problem of injections on Node.js
from injections known from client-side JavaScript, such as XSS: because
Node.js code runs without any sandbox that could prevent malicious code
from accessing the underlying system, an attacker is able to inject arbitrary
system-level commands.

4.3 a study of injection vulnerabilities

To better understand how developers of JavaScript for Node.js handle the
risk of injections, we conduct a comprehensive empirical study involving
235,850 npm modules. We investigate four research questions (RQs).

4.3.1 RQ1: Prevalence of Calls to Injection APIs

At first, we study whether APIs that are prone to injection vulnerabilities
are widely used in practice. We call a module that directly calls an injection
API an injection module. To assess whether a module uses another module
that calls an injection API, we analyze dependences between modules, as
specified in their package.json file. Given an injection module minj, we
say that another module m1 has a level-1 (level-2) dependence if it depends
on minj (via another module). Figure 4.2 shows how many npm modules
use injection APIs, either directly or via another module. We find that
7,686 modules and 9,111 modules use exec and eval, respectively, which
corresponds to 3% and 4% of all modules. In total, 15,604 modules use
at least one injection API. Furthermore, about 20% of all modules depend
directly or indirectly on at least one injection API.

Estimating the potential effect of protecting vulnerable modules shows
that fixing calls to the injection APIs in the most popular 5% of all injection
modules will protect almost 90% of all directly dependent modules. While
this result is encouraging, it is important to note that 5% of all modules
still corresponds to around 780 modules, i.e., many more than would be
reasonable to fix manually. Moreover, manually fixing these modules now
would be a point-in-time solution that does not ensure the safety of future
versions of modules and of new modules.
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Figure 4.2: Prevalence of uses of injection APIs in npm modules.

4.3.2 RQ2: Usage Patterns for Injection APIs

To understand why developers use injection APIs, we identify recurring
usage patterns and check whether the usages could be replaced with less
vulnerable alternatives. We manually inspect a random sample of 50 uses
of exec and 100 uses of eval and identify the following patterns.

Patterns of exec usage: The majority of calls (57%) trigger a single oper-
ating system command and pass a sequence of arguments to it. For these
calls, the developers could easily switch to spawn, which is a safer API to
use, equivalent to the well-known execv functions in C. The second-most
common usage pattern (20%) involves multiple operating system com-
mands combined using Unix-style pipes. For this pattern, we are not aware
of a simple way to avoid the vulnerable exec call. The above-mentioned
spawn accepts only one command, i.e., a developer would have to call it
multiple times and emulate the shell’s piping mechanism. Another interest-
ing pattern is the execution of scripts using relative paths, which accounts
for 10% of the analyzed cases. This pattern is frequently used as an ad-hoc
parallelization mechanisms, by starting another instance of Node.js, and
to interoperate with code written in other programming languages.

Patterns of eval usage: Our results of the usage of eval mostly match
those reported in a study of client-side JavaScript code [Ric+11], showing
that their findings extend to Node.js JavaScript code. One usage pattern
that was not previously reported is to dynamically create complex func-
tions. This pattern, which we call “higher-order functions”, is widely used
in server-side JavaScript for creating functions from both static strings and
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1 function escape(s) {
2 return s.replace(/"/g, ’\\"’);
3 }
4 exports.open = function open(target, callback) {
5 exec(opener + ’ "’ + escape(target) + ’"’);
6 }
7
8 // Possible attack: open("‘rm -rf *‘");

Figure 4.3: Regular expression-based sanitization and input that bypasses it.

user-provided data. We are not aware of an existing technique to easily
refactor this pattern into code that does not use eval.

Overall, we find that over 20% of all uses of injection APIs cannot be eas-
ily removed. Furthermore, many of the remaining uses are unlikely to be
refactored by the developers, e.g., because techniques for removing usages
of eval [JJM12; Mea+12] are available but not adopted by developers.

4.3.3 RQ3: Existing Mitigation Against Injection Attacks

To understand how developers deal with the risk of injections, we study
to what extent data gets checked before being passed into injection APIs.
Specifically, we analyze two conditions. First, whether a call site of an in-
jection API may be reached by attacker-controlled data, i.e., whether any
mitigation is required. We consider data as potentially attacker-controlled
if it is passed as an input to the module, e.g., via a network request, or if
the data is passed from another module and then propagates to the injec-
tion call site. Second, if the call site requires mitigation, we analyze which
mitigation technique the developers use. We find that 58% of the inspected
call sites are exploitable, i.e., attacker-controlled data may reach the injec-
tion API. Among these call sites, the following mitigation techniques are
used:

None: A staggering 90% of the call sites do not use any mitigation tech-
nique at all. For example, the call to exec in the motivating example in
Figure 4.1 falls into this category.

Regular expressions: For 9% of the call sites, the developers harden their
module against injections using regular expression-based checks of input
data. An example of such a fix in our data set is shown in Figure 4.3. Un-
fortunately, most regular expressions we inspected are not correctly imple-
mented and cannot protect against all possible injection attacks. For exam-
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ple, the escape method in Figure 4.3 does not remove back ticks, allowing
an attacker to deliver a malicious payload using the command substitution
syntax, as illustrated in the last line of Figure 4.3. In general, regular ex-
pressions are fraught with danger when used for sanitization [Hoo+11].

Sanitization modules: To our surprise, none of the modules uses a third-
party sanitization module to prevent injections. To validate whether any
such modules exists, we searched the npm repository and found six mod-
ules intended to protect calls to exec against command injections: shell-
escape, escapeshellarg, command-join, shell-quote, bash, and any-shell-escape. In to-
tal, 198 other modules depend on one of these sanitization modules, i.e.,
only a small fraction of the 19,669 modules that directly or indirectly use
exec. For eval, there is no standard solution for sanitization and the
unanimous expert advice is to either not use it at all in combination with
untrustworthy input, or to rely on well tested filters that allow only a re-
stricted class of inputs, such as string literals or JSON data.

We conclude from these results that a large percentage of the 15,604

modules that use injection APIs are potentially vulnerable, and that standard
sanitization techniques are rarely used. Developers are either unaware of
the problem in the first place, unwilling to address it, or unable to properly
apply existing solutions.

4.3.4 RQ4: Maintainability of Vulnerable Npm Modules

To understand whether module developers are willing to prevent vulner-
abilities, we reported 20 previously unknown command injection vulner-
abilities to the developers of the modules that call the injection APIs. For
each vulnerability, we describe the problem and provide an example at-
tack. Most of the developers acknowledge the problem. However, in the
course of several months, only three of the 20 vulnerabilities have been
completely fixed, confirming earlier observations about the difficulty of
effectively notifying developers [Dou+11; Dur+14; Sto+16].

One may hypothesize that these vulnerabilities are characteristic to un-
popular modules that are not expected to be well maintained. We checked
this hypothesis by measuring the number of downloads between January 1

and February 17, 2016 for three sets of modules: (i) modules with vulnera-
bilities reported either by us or by others via the Node Security Platform,
(ii) all modules that call an injection API, (iii) all modules in the npm repos-
itory. Figure 4.4 summarizes our results on a logarithmic scale. The boxes
are drawn between the lower quartile (25%) and the upper one (75%) and
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Figure 4.4: Comparison of the popularity of all the modules, modules with calls
to injection APIs, and modules with reported vulnerabilities. The
boxes indicate the lower quartile (25%) and the upper quartile (75%);
the horizontal line marks the median; the dots are outliers.

the horizontal line marks the median. The results invalidate the hypoth-
esis that vulnerable modules are unpopular. On the contrary, we observe
that various vulnerable modules and injection modules are highly popular,
exposing millions of users to the risk of injections.

4.3.5 Case Study: The growl Module

To better understand whether developers are aware of possible injection
vulnerabilities in modules that they use, we manually analyzed 100 mod-
ules that depend on growl. The growl module displays notifications to users
by invoking a particular command via exec, which is one of the vulner-
abilities we reported as part of RQ4. We found that modules depending
on growl pass various kinds of data to growl, including error messages and
data extracted from web pages. As anticipated in RQ1, vulnerabilities prop-
agate along module dependences. For example, the loggy module exposes
the command injection vulnerability in growl to 15 other modules that de-
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1 // sanitization in autolint
2 function escape(text) {
3 return text.replace(’$’, ’\\$’);
4 }
5 // sanitization in mqtt-growl
6 message = message.replace(/"/g, "\\\"");
7 // sanitization in bungle
8 const ansiRx =
9 /[\u001b\u009b][[()#;?]*
10 (?:[0-9]{1,4}(?:;[0-9]{0,4})*)?
11 [0-9A-ORZcf-nqry=><]/g;
12 Growl(message.replace(ansiRx, ’’));
13 // sanitization in chook-growl-reporter
14 function escapeForGrowl(text) {
15 var escaped = text.replace(/\(/g, ’\\(’);
16 escaped = escaped.replace(/\)/g, ’\\)’);
17 escaped = escaped.replace(/\""/g, ’\\""’);
18 return escaped;
19 }
20 // input that bypasses all the sanitizations:
21 // "tst‘rm -rf *‘";

Figure 4.5: Broken sanitization in growl’s clients.

pend on loggy by sending inputs directly to growl without any check or
sanitization.

We found only four modules that sanitize the data before sending it to
the vulnerable module: autolint, mqtt-growl, bungle, and chook-growl-reporter.
We report these sanitizers in Figure 4.5. Sadly, we find that all these meth-
ods are insufficient: one can easily bypass them, as illustrated by the exam-
ple input at the end of Figure 4.5. The input again exploits the command
substitution syntax, which is not considered by any of the sanitizers.

Impact of our study: After we published a preliminary version of this pa-
per [SPL16], several providers of Node.js vulnerability databases included
findings of the study as vulnerability reports.4

4.4 conclusions

This chapter studies in detail injection vulnerabilities in Node.js and shows
that the problem is widespread and not yet adequately addressed. More-
over, we show that the developers are slow to fix the reported vulnerabili-
ties in their library and that they tend to delegate sanitization responsibility
to the consumers of their code.

4 https://snyk.io/vuln/page/2?type=npm, CWE-94, npm:nd-validator:20160408

and https://nodesecurity.io/advisories.
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5
R E D O S V U L N E R A B I L I T I E S O N T H E S E RV E R - S I D E

In this chapter we present another class of security vulnerabilities that are
made worse by the novel threat model for JavaScript (see particularity P1 in
the introduction): Regular expression denial of service (ReDoS), a type of
algorithmic complexity attack. We also present a novel methodology that
enables an adversary to leverage vulnerabilities in open-source libraries
for attacking full-stack JavaScript web applications. This chapter shares
material with the corresponding publication [SP18].

5.1 motivation

Regular expressions are widely used in all kinds of software. Since reg-
ular expressions are easy to get wrong [Wil04], which may help attack-
ers to bypass checks [BBJ10; Hoo+11], developers are trained to think
about the correctness of regular expressions. In contrast, another security-
related aspect of regular expressions is often neglected: the performance,
specifically, how long it takes to match a string against a regular expres-
sion. Unfortunately, given a specifically crafted input, matching against
a suboptimally designed regular expression can easily take several min-
utes or even hours. For example, matching the apparently harmless regu-
lar expression /(a+)+b/ against a sequence of 30 “a” characters on the
Node.js JavaScript platform takes about 15 seconds on a standard com-
puter.1 Matching a sequence of 35 “a” characters already takes over 8 min-
utes, i.e., the matching time explodes exponentially.

If a server implementation suffers from this kind of performance prob-
lem, then an attacker can exploit it to overwhelm the server with hard-
to-match inputs. This attack is known as regular expression denial of ser-
vice, or short ReDoS. Such attacks are a form of algorithmic complexity
attack [CW03] that exploits the worst-case complexity behavior of algo-
rithms that match a string against a regular expression. Since for some
regular expressions, the worst-case complexity is much higher than the

1 We use JavaScript syntax for regular expressions, i.e., a pattern is either enclosed by slashes
or given to the RegExp() constructor.
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average-case complexity, an attacker can cause denial of service with a few,
relatively small inputs.

Even though ReDoS has been known for several years, recent develop-
ments in the web server landscape bring new and increased attention to
the problem. The reason is that, as mentioned several times so far in this
dissertation, JavaScript is becoming increasingly popular not only for the
client-side but also for the server-side of web applications. However, the
single-threaded nature of JavaScript, where every request is handled by
the same thread, makes server applications much more susceptible to Re-
DoS attacks. In practice, to avoid making the server unresponsive by block-
ing this thread, developers try to split any long-running computation into
smaller events, which are than handled asynchronously. The problem is
that in current JavaScript engines, matching a string against a regular ex-
pression cannot be easily split into multiple chunks of computation. As a
result, a single request can effectively block the main thread, making the
web server unresponsive to any other incoming requests and preventing it
from finishing any other already established requests.

Despite the importance of ReDoS in web servers, there is currently little
reported knowledge about the prevalence of ReDoS vulnerabilities in real-
world websites. In this chapter, we present the first comprehensive study of
ReDoS across a large number of websites. We seek to answer the following
questions:

• How widespread are ReDoS vulnerabilities in the server-side part of
real-world JavaScript-based websites?

• What is the effect of vulnerabilities on the response time of web
servers?

• What kinds of vulnerabilities are the most prevalent?

• Are more popular websites less vulnerable to ReDoS?

• Are existing defense mechanisms in use and if so, how effective are
they in preventing ReDoS attacks?

Answering these questions involves solving two methodological chal-
lenges. First, how to identify ReDoS vulnerabilities in the server-side of
websites when their source code is not available. We address this chal-
lenge based on a set of 25 previously unknown vulnerabilities in popular
libraries and by speculating how these libraries may be used in servers.
Second, how to analyze which websites are exploitable without actually
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performing a denial of service attack against live websites. We address
this challenge by triggering requests with increasing input size, using both
manually crafted exploit inputs and randomly generated, harmless inputs,
and by statistically comparing the response times.

Using this methodology, we identify 339 websites that suffer from at
least one ReDoS vulnerability. Based on experiments with locally installed
versions of the vulnerable server-side libraries, attacking these websites
with crafted inputs can cause a web server to remain unresponsive for
several seconds or even minutes. These problems are due to a very small
number of vulnerabilities, with a single vulnerability that causes 241 sites
to be exploitable. While this is encouraging from a mitigation point of
view, it also implies that an attacker aware of a single, previously unknown
vulnerability can cause serious harm to several websites.

Ojamaa and Düüna [OD12] were the first to identify ReDoS as a threat
for the Node.js platform. Davis et al. [DKL17] confirm that such problems
exist in popular modules and report that 5% of the security vulnerabili-
ties identified in Node.js libraries are ReDoS. No prior work has studied
the impact of ReDoS on real-world web sites. Existing work on detect-
ing ReDoS vulnerabilities mostly targets languages other than JavaScript.
For example, Wüstholz et al. [Wüs+17] propose a static analysis of ReDoS
vulnerabilities in Java. The only available tool for JavaScript that we are
aware of is a small utility called safe-regex2, which checks for simple
AST-level patterns known to cause ReDoS. However, this approach is no-
toriously prone to both false positives and false negatives, since it reasons
neither about the context in which these patterns appear nor about the
actual performance of regular expression matching. Our work shows the
urgent need for effective tools and techniques that detect and prevent Re-
DoS vulnerabilities in JavaScript.

In summary, this chapter contributes the following:

• A novel methodology for analyzing the exploitability of deployed
servers. The key ideas are (i) to hypothesize how server implementa-
tions may use libraries that have previously unknown vulnerabilities
and (ii) to assess whether an attack is feasible without actually attack-
ing the servers.

• The first comprehensive study of ReDoS vulnerabilities in JavaScript-
based web servers. Out of 2,846 studied websites, we find 12% to be
vulnerable.

2 https://www.npmjs.com/package/safe-regex
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Figure 5.1: Automaton for the regular expression /ˆ(a+b)?$/. s is the starting
state and a is the accepting state.

• Empirical evidence that ReDoS is a real and widespread threat. Our
work calls for novel tools and techniques that detect and prevent
ReDoS vulnerabilities.

• A benchmark of previously unreported ReDoS vulnerabilities and
ready-to-use exploits, which we make available for future research
on finding, fixing, and mitigating ReDoS vulnerabilities:

https://github.com/sola-da/ReDoS-vulnerabilities

5.2 background

5.2.1 Regular Expression Matching

Regular expressions are used to check whether a given sequence of charac-
ters matches a specified pattern. Most implementations in modern program-
ming languages address this problem by converting the regular expres-
sion into an automaton [Tho68] and through a backtracking-based search
for a sequence of transitions from the initial to an accepting state that
consumes the given string. For example, consider the regular expression
/ˆ(a+b)?$/ and its equivalent automaton in Figure 5.1. Given the string
“aab”, the automaton starts from state s and has two available transitions,
to states 1 and 3. It first takes the transition to state 1, which leads to the
accepting state a. Since the input string was not consumed and there are no
available transitions, the algorithm backtracks to s and explores the transi-
tion to state 3 etc. After multiple explorations the algorithm identifies the
sequence of transitions s → 3 → 4 → 5 → 4 → 5 → 6 → 7 → a, which
reaches the accepting state and consumes all characters of the input string.
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Figure 5.2: Automaton for the regular expression /ˆa*a*b$/. s is the starting
state and a is the accepting state.

5.2.2 Regular Expression Denial of Service (ReDoS)

The backtracking-based search may cause the algorithm to backtrack possi-
bly large number of times. ReDoS attacks exploit these pathological cases.
For example, consider the regular expression /ˆa*a*b$/, its automaton in
Figure 5.2, and the input string “aaa”. Each character “a” can be matched
using two transitions, 4→ 5 and 8→ 9. At each step, the algorithm needs
to decide which of these two transitions to take. Eventually, since there is
no character “b” in the input string, the algorithm will always fail when
reaching state 11. However, before concluding that the input string does
not match the pattern, the algorithm tries all possible ways of matching
the “a” characters. The example is a regular expression of super-linear
complexity [Wüs+17], since the number of transitions during matching is
quadratic in the input size. Other regular expression even have exponential
complexity, e.g., because of nested repetitions, such as in /ˆ(a*)*b$/. In
our study, we identify ReDoS vulnerabilities of both these types and show
that both are of importance for server-side JavaScript.

5.2.3 Execution Model of Server-Side JavaScript

The server-side Node.js platform advocates a single-threaded, event-based
execution model that uses asynchronous I/O calls. In Node.js, the main
thread of execution runs an event loop, called the main loop that han-
dles events triggered by network requests, I/O operations, timers, etc. A
slow computation, e.g., matching a string against a regular expression,
slows down all other incoming requests. Compared to multi-threaded web
servers, such as Apache, the single-threaded execution model compounds
the problem in JavaScript. For example, consider a regular expression that
takes more than an hour to match, which we show to exist in widely used
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Figure 5.3: Overview of the methodology.

JavaScript software. To completely block an Apache web server, we need
to send hundreds of such requests, each blocking one thread. Depending
on the number of available parallel processing units, the operating system,
and the thread pool size, new requests can still be handled even with hun-
dred of busy threads running. In contrast, in Node.js one such request is
enough to completely block the server for an hour. To make matters worse,
even less severe ReDoS payloads can significantly degrade the availability
of a Node.js server, as we show in Section 5.4.3.

5.3 methodology

This section presents our methodology for studying ReDoS vulnerabilities
in real websites. The overall goals of the methodology are to understand
(i) how widespread such vulnerabilities are, (ii) whether an attacker could
exploit them to affect the availability of live websites, and (iii) to what ex-
tent existing defense mechanisms address the problem. To answer these
questions, our methodology must address two major challenges. The first
challenge is a technical problem: Since the server-side source code of most
websites is not available, how to know what vulnerabilities a website suf-
fers from? The second challenge is an ethical concern: How to study the
potential impact of attacks on live websites without actually causing no-
ticeable harm to these websites?

Figure 5.3 shows a high-level overview of the methodology. We address
the two challenges through experiments performed on machines under our
control and on live websites. The main insight to address the first challenge
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is to use previously unknown vulnerabilities in popular JavaScript libraries
and to speculate how servers may use these libraries. More precisely, we
analyze third-party libraries, called node package manager modules (npm
packages or npm modules for short, discussed in detail in Chapter 2), to
find vulnerabilities that may be exploitable via HTTP requests. We then
hypothesize how the server implementation may use these packages and
create exploits for these scenarios.

To address the second challenge, we present a technique that tests if a
site is vulnerable but that avoids blocking the site for a noticeable amount
of time. The basic idea is to start with very small payloads that do not
require more computation time than normal web requests, and to then
slowly increase the payload – just long enough to claim with confidence
that the site could be exploited if an attacker used larger payloads. To de-
cide on the size of payloads sent to live websites, we run experiments on
locally installed web servers that use the vulnerable packages.

An alternative to experimenting with live websites would be to locally
install open-source web applications. We discarded this idea because it
would limit the scale of our study to the few web sites that disclose their
server-side code, because it would remain unclear whether the results gen-
eralize to real-world sites, and because we could not study which counter-
measures are deployed in practice.

5.3.1 Identifying Websites with Server-Side JavaScript

We consider the most popular one million websites aggregated by Alexa3

as candidates for our study. Many of these websites do not use JavaScript
on the server-side and analyzing all the websites against our exploits is pro-
hibitive. Instead, we select sites that run the currently most popular frame-
work for JavaScript-based web servers, Express4. To this end, we make a
request to each of the one million websites and check whether the header
X-Powered-By is “Express”. The framework sets this value by default on
a fresh installation. In total, 2,846 sites set this header which account for a
market share of around 0.3%, consistent with estimates by others.5 Because
headers may be filtered to prevent attackers from targeted attacks and be-
cause frameworks other than Express exist, our selection of sites is likely
yield an underapproximation of the impact of ReDoS. Figure 5.4 shows the

3 http://www.alexa.com/
4 https://expressjs.com/
5 https://w3techs.com/technologies/details/ws-nodejs/all/all
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Figure 5.4: Number of server-side JavaScript websites within a given popularity
range.

number of Express-based websites in batches of 100,000 sites, ordered by
popularity. We observe that Express tends to be used by the more popular
websites, confirming the importance of studying the security of JavaScript-
based servers.

5.3.2 Finding ReDoS Vulnerabilities in Libraries

Our methodology relies on knowing previously unknown, or at least not
yet fixed, ReDoS vulnerabilities in popular npm modules. Similar to pre-
vious work [Wüs+17], we consider a regular expression to be vulnerable
if we can construct inputs of linearly increasing size that cause the match-
ing time of the expression to increase super-linearly. To identify previously
unknown vulnerabilities, we use a combination of automated and manual
analysis, similar to what a potential attacker might do. This technique is
not the contribution of this dissertation, but rather a way to enable our
study. In principle, any other way of identifying ReDoS vulnerabilities
could be used instead, including existing analyses [Wüs+17], which how-
ever, are currently not available for JavaScript.

At first, we download the 10,000 most popular modules and extract their
regular expressions by traversing the abstract syntax trees of the JavaScript
code. This yields a total of 324,791 regular expressions, with a mean of
63.67, a median of 5.00 and a maximum of 19,791 per module. After remov-
ing regular expressions that contain no repetitions, and hence are immune
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to algorithmic complexity attacks, we obtain a total of 138,123 expressions,
with mean 37.93 and median 4.00 per module.

Next, we semi-automatically search for regular expression patterns that
are known to be vulnerable. For example, we search for expressions con-
taining repetitions of a negated group followed by a character. The sec-
ond regular expression in Figure 5.7 is an example because it contains the
subexpression [ˆ=]+=. A regular expression that is not anchored with a
start anchor and contains this pattern is likely to be vulnerable. The reason
is that the repetition group is generic enough to contain most of the possi-
ble prefixes and the = character guarantees that there exists a failing suffix.
For example, the regular expression /ab[ˆ=]+=/ can be exploited using
a long string "abababab..".

Given a set of possibly exploitable regular expression, we manually in-
spect the context in which the regular expressions are used. The goal is to
find matching operations on data that may be delivered through an HTTP
request to a web server. To this end, we focus on (i) modules included in
the Express framework, (ii) middleware modules that extend this frame-
work, and (iii) modules that manipulate HTTP request components, such
as the body or a specific header. For regular expressions in these modules,
we keep only those with a possible data flow from the package interface or
from an HTTP header to the regular expression. Overall, it took the author
of this dissertation only a couple of days to find 25 such vulnerabilities in
widely used npm modules, showing that a motivated individual can attack
real-world websites with moderate effort. A more powerful attacker could
easily detect a larger number of vulnerabilities and perform a larger-scale
attack.

5.3.3 Creating Exploits

Based on the ReDoS vulnerabilities in npm modules, we create exploits
targeted at web servers that use these modules. The main idea is to hy-
pothesize how a server-side web application might use a module. To this
end, we set up a fresh Express installation and implement an example web
application that uses the module. For example, for a package that parses
the user agent, we build an application that parses the user agent of every
HTTP request for the main page, which might be used to track visitors.
Next, we try to create an HTTP request where user-controlled data reaches
the vulnerable regular expression, and craft input values that trigger an
unusually long matching time. For crafting the input, we try to confuse
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the regular expression engine by forcing it to backtrack because the in-
put can be matched in multiple ways [KRT13; Wüs+17]. While creating
exploits, we assume that the maximum header size is 81,750 characters,
which is the default in Express.js. If we succeed in crafting an input that
takes more than five seconds, we consider the vulnerability as exploitable
and consider it for the remainder of the study.

To further assess the impact of the exploits, we measure how much
longer it takes to process a crafted input compared to a random string
of the same length. We use two ways of measuring the time. First, we mea-
sure the matching time of the regular expression, i.e., the time needed to
check whether a string matches the regular expression. Second, we mea-
sure the time of an entire HTTP request, called response time. The response
time may include various other components, such as HTTP parsing and se-
rialization, DNS resolving, routing time for the package, and dealing with
HTTP retransmissions or package fragmentation. To measure the response
time of a site, we request its main page. For complex sites, this measure
underapproximates the time a human user needs to wait for the page to
load, because complex sites require separate requests for images, etc.

5.3.4 ReDoS Analysis of Websites

The next step is to measure how many websites are vulnerable to a Re-
DoS attack based on one of the exploits. The main challenge is to draw
meaningful conclusions about the harm that an attacker could cause, with-
out actually attacking live websites. During our initial experiments we sent
one request with a crafted header that appeared to make the analyzed web-
site unresponsive for almost a minute. The goal of our methodology is to
avoid this type of mistake.

We address this challenge by triggering requests with increasing input
sizes, using both crafted and random inputs, while measuring the response
times. Based on locally performed experiments, we choose input sizes that
are unlikely to block the server for more than a small, configurable amount
of time (we use two seconds in our experiments). If the response time with
crafted inputs grows faster than with random inputs, then we classify the
website as exploitable.

Measuring the response time in a reliable way is non-trivial due to DNS
resolving, network caching, delays, retransmissions, and other influencing
factors. Another issue is how to determine whether the response time is
larger than another in a statistically reliable way. We address these issues
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by adapting a technique originally used for comparing the performance
of software running on a virtual machine [GBE07; PHG14]. The basic idea
is to repeatedly measure the response time and to conclude that crafted
inputs cause a higher response time than random inputs only if we observe
a statistically significant difference.

More specifically, to measure the response time for a given input, we
first repeat the request nw times to “warm up” the connection, e.g., to
fill network caches, and then repeat the request another nm times while
recording the response times. Given k pairs of increasingly large random
and crafted inputs (irandom, icra f ted), where the two inputs in a pair have the
same size, we obtain k pairs (Trandom and Tcra f ted) of sets of time measure-
ments (with |Trandom| = |Tcra f ted| = nm). For each input size, we compare
the confidence intervals of the values in Trandom and Tcra f ted and conclude
that the response times differ if and only if the intervals do not overlap. If
the response times differ for all k input sizes, we quantify the difference
for an input size as the difference between Trandom and Tcra f ted, where T
is the average of the times in T. For k input sizes, this comparison gives
a sequence of differences d1, .., dk. Finally, we consider a website to be ex-
ploitable if d1 < d2 < .. < dk. Intuitively, this means that the response times
for random and crafted inputs have a statistically significant difference,
and that this difference increases when the input size increases.

To execute these measurements, we need to pick values for nw, nm, k,
and the k input sizes. We use nw=three, nm=five, and k = 5 because these
values are large enough to draw statistically relevant conclusions for most
websites yet small enough to not disturb the analyzed servers. For picking
the k input sizes, the challenge is to ensure that we measure a difference
when there is one without repeatedly causing the server to block for a
longer period of time. We address this challenge by experimenting on a
locally installed version of the vulnerable package and by choosing inputs
that take approximately 100ms, 200ms, 500ms, 1s and 2s to respond to.

Our setup allows us to assess whether a website could be exploited with-
out actually attacking it. Since we take measurements in a sequential man-
ner and since the overall number of requests per site is small, we allow
legitimate users to be served between our requests. Moreover, the servers
of popular websites implement some kind of redundancy, such as multi-
ple Node.js instances in a cluster, i.e., our measurements are likely to block
only one such instance at a time. In contrast, an attacker would likely send
both more requests and requests with larger inputs, which can cause se-
vere harm to vulnerable sites, as we show in Section 5.4.3.
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5.3.5 Analysis of Mitigation Techniques

Some sites reject requests with large headers and instead return a “400 Bad
Request” error. This mitigation can limit the damage of ReDoS attacks. To
measure whether a site uses this mitigation technique, we create benign
requests of different sizes and measure how often a site rejects a request.

5.4 results

This section presents the results of applying the methodology described
in Section 5.3 to live, real websites. We perform our measurements us-
ing three different machines depending on the experiments: a ThinkPad
440s laptop with four Intel i7 CPUs and 12GB memory (Section 5.4.1),
a third party commercial web server with 512MB memory (Section 5.4.3
and 5.4.4) and a server with 48 Intel Xeon CPUs and 64GB memory (from
Section 5.4.6 on).

5.4.1 Vulnerabilities and Exploits

Figure 5.5 shows the modules for which we found at least one vulnerable
regular expression that can be exploited through the module’s interface. At
the time of performing our experiments, each vulnerability was working
on the latest release of the package. The packages vary in the number
of dependencies and downloads, but we can safely conclude that ReDoS
vulnerabilities are present even in very popular packages.

Given the amount of possible damage entailed by the vulnerabilities,
we have invested significant efforts to disclose them in a responsible way.
For each vulnerability, we have contacted the developers either directly or
through the Node Security Platform6, and gave them several months to fix
the problem before making it public. 14 of the 25 have been fixed by the
time of writing and are listed as advisories on the Node Security Platform.
For the others, the developers are either still in the process of fixing or
decided to leave the task of fixing to the community. The complete list
of vulnerabilities, along with details on their current status is available
online.7

6 https://nodesecurity.io/advisories
7 https://docs.google.com/spreadsheets/d/1rnR8zsXeA1eccrpxeZK0_
LtQOlc8j_u60IR7nnVQgbE/edit?usp=sharing
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Module Version Number of Downloads
dependencies in July 2017

debug 2.6.8 16,055 54,885,335

lodash 4.17.4 49,305 44,147,504

mime 1.3.6 2,798 22,314,018

ajv 5.2.2 758 17,542,357

tough-cookie 2.3.2 302 15,981,922

fresh 0.5.0 197 14,151,270

moment 2.18.1 14,421 10,102,601

forwarded 0.1.0 31 9,883,630

underscore.string 3.3.4 2,486 7,277,966

ua-parser-js 0.7.14 225 5,332,979

parsejson 0.0.3 19 4,897,928

useragent 2.2.1 191 3,515,292

no-case 2.3.1 18 3,321,043

marked 0.3.6 2,624 3,012,792

content-type-parser 1.0.1 8 2,337,147

platform 1.3.4 128 757,174

timespan 2.3.0 34 523,290

string 3.3.3 911 421,700

content 3.0.5 9 316,083

slug 0.9.1 499 151,004

htmlparser 1.7.7 178 138,563

charset 1.0.0 36 112,001

mobile-detect 1.3.6 101 107,672

ismobilejs 0.4.1 50 44,246

dns-sync 0.1.3 7 10,599

Figure 5.5: Modules with at least one previously unknown vulnerability.

As explained in Section 5.3.3, we try to create exploits for the vulner-
abilities by hypothesizing how web server implementations may use the
vulnerable modules. Figure 5.6 shows the modules and usage scenarios
for which we could create an exploit. For all the scenarios we assume the
payload is sent using a specific HTTP header. We believe that HTTP bodies,
UDP packages or WebSocket messages can also be used for the same pur-
pose. The last column of Figure 5.6 shows the JavaScript implementation
of the usage scenario. We run this implementation on our local server to
experiment with the exploit.

Most of the scenarios and their implementations are relatively simple.
This simplicity shows that an attacker that follows a methodology similar
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ID Module Usage scenario JavaScript example

1 charset The website uses this
package to parse the
content type of every re-
quest.

require("charset")(req.headers);

2 content The website uses this
package to parse the
content type of every re-
quest.

var content = require("content");
content.type(

req.headers["content-type"]);

3 fresh The website uses
express, which by de-
fault uses this package
to check the freshness
of every request.

var fresh = require("fresh");
fresh(req.headers);

4 forwarded The website uses
express and the “trust
proxy” option is set.
This package is then
used to check which
proxies a request came
through.

var forwarded = require("forwarded");
var addrs = forwarded(req);

5 mobile-
detect

The website uses this
package to get informa-
tion about the requester.

var MobileDetect =
require("mobile-detect");

var headers =
req.headers["user-agent"];

var md = new MobileDetect(headers);
md.phone();

6 platform The website uses this
package to get informa-
tion about the requester.

var platform = require("platform");
var headers =

req.headers["user-agent"];
var agent = platform.parse(headers);

7 ua-
parser-js

The website uses this
package to get informa-
tion about the requester.

var useragent =
require("ua-parser-js");

var headers =
req.headers["user-agent"]

var agent = useragent.parse(headers);

8 useragent The website uses this
package to get informa-
tion about the requester.

var useragent = require("useragent");
var headers =

req.headers["user-agent"];
var agent =

useragent.parse(headers);

Figure 5.6: Usage scenarios we hypothesize the vulnerable modules to be in-
volved in.
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ID Module Vulnerable regular expression Header

1 charset /(?:charset|encoding)
\s*=\s*[’"]? *([\w\-]+)/i

Content-Type

2 content

/^([^\/]+\/[^\s;]+)(?:(?
:\s*;\s*boundary=(?:
"([^"]+)"|([^;"]+)))|
(?:\s*;\s*[^=]+=(?:(?:"
(?:[^"]+)")|(?:[^;"]
+))))*$/i

Content-Type

3 fresh / *, */ If-None-Match
4 forwarded / *, */ X-Forwarded-For

5 mobile-detect

new RegExp("Dell.*Streak|
Dell.*Aero|Dell.*Venue|
DELL.*Venue Pro|Dell Flash|
Dell Smoke|Dell Mini 3iX|
XCD28|XCD35|\\b001DL\\b|
\\b101DL\\b|\\bGS01\\b")

User-Agent

6 platform /^ +| +$/g User-Agent

7 ua-parser-js
/ip[honead]+(?:.*os\s
([\w]+)*\slike\smac|;
\sopera)/

User-Agent

8 useragent

/((?:[A-z0-9]+|[A-z\-]+ ?)?
(?: the)?(?:[Ss][Pp][Ii]
[Dd][Ee][Rr]|[Ss]crape|
[A-Za-z0-9-]*(?:[^C][^Uu])
[Bb]ot|[Cc][Rr][Aa][Ww]
[Ll])[A-z0-9]*)(?:(?:
[ \/]| v)(\d+)(?:\.(\d+)
(?:\.(\d+))?)?)?/

User-Agent

Figure 5.7: Vulnerable modules with their corresponding exploitable regular ex-
pression and the HTTP header used for mounting the exploit.

to ours could create exploits that might work for a wide range of websites
with relatively little effort. For an attack targeted at a specific website, we
believe that more complex scenarios could be built, e.g., involving mul-
tiple HTTP requests and domain knowledge. For example, the marked
package provides a parser for the markdown format. By crafting a spe-
cific markdown document, an attacker can block the main loop for hours.
However, to deploy the exploit, complex interactions with the server are
needed. That is, the attacker needs to figure out which part of the website
may use a markdown parser and how to provide a document that will be
processed by the parser. We believe that such a scenario is realistic, but it
requires an in-depth analysis of each website. We leave for future work to
test this hypothesis. In this work, our goal is to assess the effect of exploits
that can be deployed at a large scale. Therefore, we only consider very sim-
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Figure 5.8: Matching time for different input sizes.

ple usage scenarios that can be triggered with a single HTTP request made
to the main page.

To better understand the vulnerabilities, Figure 5.7 shows for each vul-
nerable module the vulnerable regular expressions. Some of the expres-
sions are non-trivial, making it hard for developers to focus on possible
ReDoS attacks in addition to the correctness of the regular expression.
Four of these regular expressions can be successfully identified by a re-
cent approach proposed by Wüstholz et al. [Wüs+17], which targets Java
applications, though. The remaining four regular expressions cannot be de-
tected by their approach due to differences between the regular expression
semantics of Java and JavaScript.

5.4.2 Matching Time

We use the exploits to measure the influence of the size of the input to
the matching time of the vulnerable expression (Figure 5.8). For most of
the exploits, the input dependency seem to be quadratic, reaching one sec-
ond matching time within 20,000 to 40,000 characters. For two exploits, the
input dependency is presumably exponential, reaching one second match-
ing time with less than 1,000 characters. We consider any of these eight
exploits to be harmful because they may impact a website’s availability
(Section 5.4.3) and because even a non-exponential ReDoS vulnerability
may aid an attacker in mounting a DoS attack (Section 5.5.1).
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To further illustrate the effectiveness of inputs crafted for a specific regu-
lar expression, we measure the matching time for each vulnerable module
with randomly created inputs. It turns out that random string inputs of the
same size as our crafted exploits cause much lower matching times. The
maximum matching time across the eight attacks is 20 milliseconds for in-
puts with 100,000 characters. We conclude that crafting inputs for vulner-
able regular expressions is significantly more effective, from an attacker’s
perspective, than launching a brute-force DoS attack with randomly cre-
ated inputs.

5.4.3 Availability

We now show that the matching time of a regular expression has a direct
impact on the availability of a web server. To show the threat to availabil-
ity posed by ReDoS exploits, we create a simple Express application with
two features: it replies with a "hello world" message when called at the
"/echo" path, and it calls the forwarded module with the request head-
ers when called at the "/redos" path. We choose this module because it
appears in Figure 5.8 to be the least harmful in our set of exploits, i.e., we
are underestimating the negative impact on availability. We then upload
this simple application on a machine running Node.js, provided by a com-
mercial cloud platform8.

We set up two other machines to concurrently send request. One ma-
chine, called the victim, measures the time it takes to trigger 100 requests
of the "hello world" message. This victim machine triggers the next re-
quest once the previous request has been responded to. At the same time,
the other machine, called the attacker, delivers 1,000 ReDoS payloads, by
triggering all 1,000 requests at once. The victim machine starts its requests
immediately after the victim machine has triggered its requests.

We vary the payload size from 0 characters to 8,000 characters in incre-
ments of 1,000 characters. A zero-sized payload is a request with an empty
header instead of one that exploits the ReDoS vulnerability. We consider
the zero-sized payload to check whether a Node.js server can be blocked
using a brute-force strategy. We chose the upper limit for the payload size
because, by default, the web server provider limits the size of the header
fields to 8,500 characters. Other hosting providers allow significantly larger
headers, as we report later in this section.

8 http://heroku.com
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Figure 5.9: Impact of differently sized payloads on a server’s response time.
Note the logarithmic y-scale. Payloads are plotted in increments of
1,000 characters.

Figure 5.9 shows the response times measured at the victim machine for
the first 25 "/echo" requests. Payloads smaller than 4,000 characters have
no significant effect on the response time of the server. In contrast, pay-
loads larger than this value delay as many as eight requests with a maxi-
mum delay of 20 seconds. By increasing the size of payloads, an attacker
can control both the number of requests we delay and their duration. For
the largest payloads we use, we even experienced dropping of requests.

This result is particularly remarkable because an individual payload of
size 4,000 does not require an immense amount of time to respond to. We
separately measured the CPU time required to respond to one such request
and find it to take only 5.73 milliseconds, on average. However, several
requests together can delay the victim’s request by up to 20 seconds. This
finding shows that the ReDoS payloads have a cumulative effect and even
a small delay in the main loop can cause significant harm for availability.

We remind the reader that the above experiment uses the smallest pay-
load in our data set, forwarded. Therefore, if we show that even this
exploit poses a threat to availability, we can conclude that the rest of the
exploits also do. For more severe vulnerabilities, e.g., in ua-parser-js,
there is even no need to evaluate the impact on availability. As described
in the Section 5.2, one single such payload is enough to completely block
the server for as long as the matching takes. Considering that with 50–60

characters we predict a CPU computation time in the order of years, such
vulnerabilities are a very serious threat to availability.
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Figure 5.10: Correlation between server computation time and request response
time.

5.4.4 Response Time vs. Matching Time

Our methodology relies on the assumption that small changes in the server
computation time have an effect on clients. To validate this assumption we
again use the forwarded package and the commercial web server setup
from the previous section. We use 1,000 payloads smaller than 8,000 char-
acters. The largest one of these payloads produces a matching time smaller
than 100 milliseconds on our local machine. We measure the time spent by
the server in the forwarded package and the time it takes for a request to
be served at the client level. We then plot the relation between these two
time measurements in Figure 5.10. The correlation between both measure-
ments is 0.99, i.e., very strong. The strong correlation shows that the delays
introduced by the network layer are relatively constant over time and that
the server computation time is the dominant component in the response
time measured at the client-side. Of course, the observed value depends
on the chosen web server provider and the current server load, but we can
safely conclude that measuring time at the client level is a good enough
estimation of the server-side computation time.

5.4.5 Dimensioning Exploits

Choosing an appropriate size for the payload is a crucial part in our
methodology and distinguishes our study from a real DoS attack on web-
sites. The goal of this step is to find a payload size that is large enough
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Module P1: P2: P3: P4: P5:
100ms 200ms 500ms 1s 2s

fresh 12,000 17,000 27,000 37,500 53,500

forwarded 12,000 17,000 26,500 38,000 53,500

useragent 500 650 925 1,150 1,450

ua-parser-js 38 39 40 41 42

mobile-detect 10,500 15,500 25,000 36,500 50,500

platform 7,500 11,000 17,500 25,000 34,500

charset 10,500 15,500 24,000 34,000 48,000

content 8,000 11,000 18,000 25,500 35,500

Figure 5.11: Number of characters in each payload needed to achieve a specific
delay in a vulnerable module.

to check whether a website is vulnerable to a specific attack, but small
enough to only block the website for a negligible amount of time. To this
end, we locally run each exploit five times with a payload of increasing
size and stop the process when the matching time exceeds two seconds.
We consider five target matching times, 100ms, 200ms, 500ms, 1s, and 2s,
and choose the payload size that produces the closest matching time to the
target time.

Figure 5.11 shows the values for each target time and vulnerable mod-
ule. For example, for the platform vulnerability, we obtain a matching
time of 200ms with a payload of 11,000 characters. The useragent and
ua-parser-js packages, whose matching times grow at a much faster
rate, requiring less than 1,500 characters to cause a delay of 2s.

5.4.6 Vulnerable Sites

The goal of the next step is to assess to what extent real websites suffer
from ReDoS vulnerabilities. Based on the five payload sizes for each ex-
ploit, we create attack payloads and random payloads for each exploit and
payload size. We send these payloads to the 2,846 real websites that are
running an Express webserver (Section 5.3.1). We warm up the connection
three times and then measure five response times for both random and ma-
licious inputs. Using the methodology described in Section 5.3.4, we then
decide based on the measured response times whether a site is vulnerable.
If for some reason, we could not send three or more out of the five payloads
to a specific website, we consider that website to be non-vulnerable.
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Overall, we observe that 339 sites suffer from at least one of the eight vul-
nerabilities. 66 sites actually suffer from two vulnerabilities and six sites
even from three. This result shows that ReDoS attacks are a widespread
problem that affects a large number of real-world websites. Given that our
methodology is designed to underestimate the number of affected sites,
e.g., because we consider only eight exploits, the actual number of ReDoS-
vulnerable sites is likely to be even higher. Moreover, we expect the grow-
ing popularity of JavaScript on the server side to further increase the prob-
lem in the future.

To illustrate our methodology for deciding whether a site is vulnerable,
consider two example websites. In Figure 5.12, we plot for each of the five
payload sizes the response time for malicious and random inputs. The fig-
ure shows the mean and the confidence intervals for a vulnerable site in
Figure 5.12a and for a non-vulnerable site in Figure 5.12b. The response
time grows significantly faster for the malicious payloads in the vulnera-
ble site, reaching slightly more than two seconds for the fifth payload. In
contrast, for the non-vulnerable site, the response time for both malicious
and random payloads seems to grow linearly. Since the confidence inter-
val for the response times in Figure 5.12b overlap, we classify this website
as non-vulnerable. By inspecting other websites classified as vulnerable by
our methodology, we observe patterns similar to Figure 5.12a. Therefore,
we conclude that our criteria for deciding if a website is vulnerable are
valid.

5.4.7 Prevalence of Specific Vulnerabilities

Figure 5.13 shows the number of websites affected by each vulnerability.
Perhaps unsurprisingly, the vulnerabilities in fresh and forwarded have
most impact, since these two modules are part of the Express framework.
One of them needs to be activated using a configuration option, while the
other module is enabled by default. One may ask why not all Express ana-
lyzed websites suffer from this problem. The reason is the way we dimen-
sion our payloads: Many Express instances limit the header size, and hence
we cannot send large enough payloads to confirm that the sites are vulner-
able. The other six vulnerabilities affect websites with a frequency that is
roughly proportional to the popularity of the respective modules. For ex-
ample, the vulnerability in the popular useragent affects more websites
than the vulnerability in the less used charset module. To our initial
surprise, we cannot confirm any site vulnerable due to the content mod-
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Figure 5.12: Effect of increasing payload sizes on the response time of two web-
sites.
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Exploit Affected sites

fresh 241

forwarded 99

ua-parser-js 41

useragent 16

mobile-detect 9

platform 8

charset 3

content 0

Figure 5.13: Number of websites affected by specific vulnerabilities.

ule. After more careful consideration, we realized that there are two more
popular alternatives for parsing the Content-Header and the content
package seems to be more popular among users of the hapi.js frame-
work, which is a competitor of Express.

From an attacker’s perspective, the distribution of vulnerabilities is great
news, because exploits are portable across websites and knowing a vulner-
abilities is sufficient to attack various websites. Likewise, the distribution
is also good news for the community, showing that one can lower the risk
of ReDoS in multiple websites by fixing a relatively small set of popular
packages.

5.4.8 Influence of Popularity

Are ReDoS vulnerabilities a problem of less popular sites? In Figure 5.14,
we show how the vulnerable sites are distributed across the Alexa top one
million sites. For each point p on the horizontal axis, the vertical axis shows
the number of exploitable sites with popularity rank ≤ p. For example,
there are 61 vulnerable sites in the top 100,000 websites, with one site in top
1,000 and nine in top 10,000. As can be observed from the distribution, the
vulnerabilities are roughly equally distributed among the top one million
sites. There is even a slight tendency toward more vulnerabilities among
the more popular websites. This tendency can be explained by the trend
we have seen in Figure 5.4, that server-side JavaScript tends to be more
popular among popular websites. Overall, we can conclude that ReDoS
vulnerabilities are a general problem that affects sites independent of their
popularity ranking.
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Figure 5.14: Cumulative distribution function showing the popularity of vulner-
able sites. Each point on the graph shows how many sites among
the top x sites suffer from at least one vulnerability.

5.4.9 Use of Mitigation Techniques

As mentioned before, some websites refuse to process a request whose
header size exceeds a certain size. In Figure 5.15 we plot for each exploit
how many websites accept a payload of a given size. As can be observed,
most websites accept headers that are smaller than 10,000 characters, but
only few websites accept headers that are, for instance, 40,000 characters
long. As we have shown in Section 5.4.3, 10,000 characters are enough to
do harm even with the least serious vulnerability. Therefore, the current
limits that the websites apply on the header size are insufficient and they
do not provide adequate protection against DoS.

Another interesting trend to observe in Figure 5.15 is that even for the
most harmful exploit, useragent, for which we require payloads between
38 and 42 characters only, the number of websites that accept larger pay-
loads decreases over time. This is surprising since for other exploits like
mobile-detect there seem to be more websites to accept 10,000 charac-
ters long headers. We believe this observation to be due to the fact that
some websites refuse to process many requests from the same user in a
short period of time. For instance, our largest payload is sent after approxi-
mately 50 other requests of smaller size and the site refuses to serve it. This
is a well known network-level protection against DoS, but there seem to be
only around 200 websites to implement it. However, limiting the number
of requests is no silver bullet against denial of service attacks, especially
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when the attacker has the resources to deploy a distributed denial of ser-
vice attack.

5.4.10 Threats to Validity

One threat to validity for our study is that we rely on time measurements
performed over the network to estimate the likelihood of a ReDoS vulnera-
bility. One may argue that these measurements should not be trusted and
that pure chance made us observe some larger slowdowns for malicious
payloads. We address this threat in multiple ways: We show that for com-
mercial web hosting servers there is a high correlation between response
time and server CPU time, we repeat measurements multiple times, and
we draw conclusions only from statistically significant differences.

Another potential concern is that the exploits we created are too generic
and happen to cause slowdown in another regular expression than the one
we created them for. We believe that this situation would only impact our
ability to tell which module is used on the server-side and not the impact of
a ReDoS attack. Moreover, five of our exploits rely on a specific sequence
of characters in the payload to the effective. These sequences of highly
contextual characters need to be present in the beginning or at the end
of the exploit. Removing any of them would make the exploit unusable.
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Therefore, we believe that at least for these vulnerabilities it is very likely
that our exploits indeed trigger the intended regular expression.

5.5 discussion

In this section, we discuss the potential of a large-scale DoS attack on
Node.js websites and some defenses we recommend to minimize the im-
pact of such an event. Finally, we describe an unexpected implication of
our study: that algorithmic complexity attacks can be used for software
fingerprinting.

5.5.1 Impact of a Large-Scale Attack

Compared to a regular DoS attack, a ReDoS vulnerability enables an at-
tacker to launch an attack with fewer resources. As shown in Section 5.4.3,
even the least harmful vulnerabilities we identify can be a lethal weapon
when used as part of a large-scale DoS attack, because the attacker can
send payloads that hang the loop for hundreds of milliseconds, several sec-
onds, or even more, depending on the vulnerability. We remind the reader
that with just eight standard attack vectors we could affect hundreds of
websites.

It is worth emphasizing once again that this issue would not be as se-
rious in a traditional thread-based web server, such as Apache. This is
because the matching would be done in a thread serving the individual
client. In contract, in an event-based system, the matching is done in the
main loop and spending a few seconds matching a regular expression is
equivalent to completely blocking the server for this amount of time.

A large-scale ReDoS attack against Node.js-based sites is a bleak sce-
nario for which, as we have shown, many websites are not prepared. To
limit this risk, we have been working with the maintainers of vulnerable
modules to fix vulnerabilities. In addition, we urgently call for the adop-
tion of multiple layers of defense, as outlined in the following.

5.5.2 Defenses

First of all, to limit the effect of a payload delivered through an HTTP
header, the size of the header should be limited. For more than 15% sites,
we could successfully deliver headers longer than 25,000 characters. We are
not aware of any benign use cases for such large HTTP headers. Therefore,
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a best practice in Node.js applications should be to limit the size of request
headers. This kind of defense would mitigate the effects of some potential
attacks, but is limited to vulnerabilities related to HTTP headers. In con-
trast, vulnerabilities related to other inputs received from the network, e.g.,
the body of an HTTP request, would remain exploitable.

Another defense mechanism could be to use a more sophisticated regu-
lar expression engine that guarantees linear matching time. The problem
is that these engines do not support advanced regular expression features,
such as look-ahead or back-references. Davis et al. [DKL17] advocate for
a hybrid solution that only calls the backtracking engine when such ad-
vanced features are used, and to use a linear time algorithm in all other
cases. This is an elegant solution that is already adopted by languages like
Rust9. However, it would not completely solve the problem, since some
regular expressions with advanced features may still contain ReDoS vul-
nerabilities. For instance, during our vulnerability study, we found the
following regular expression:

/(?=.*\bAndroid\b)(?=.*\bMobile\b)/i

This expression from the ismobilejs module contains both lookahead
and has super-linear complexity in a backtracking engine.

We also recommend that Node.js augments its regular expression APIs
with an additional, optional timeout parameter. Node.js will stop any
matching of regular expressions that takes longer than the specified time-
out. This solution is far from perfect, but it is relatively easy to imple-
ment and adopt, has been successfully deployed in other programming
languages [MTK12], and may also be feasible for Node.js [DWL18].

Additionally, we advocate that our work should be used as a roadmap
for penetration testing sessions performed on Node.js websites. First, the
tester audits the list of package dependencies, identifies any known Re-
DoS vulnerability in these packages or analyzes all the contained regular
expressions. Second, the tester creates payloads for all the vulnerable reg-
ular expressions identified in the first step. Third, the tester tries to deliver
these payloads using standard HTTP requests.

Finally, better tools and techniques should be created to help developers
reason about ReDoS vulnerabilities in server-side JavaScript. Both static
and dynamic analysis tools can aid in understanding the complexity of
regular expressions and their performance. A good starting point could be

9 https://github.com/rust-lang/regex
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porting existing solutions that were created for other languages, e.g., for
Java [Wüs+17].

5.5.3 Fingerprinting Web Servers

Part of our methodology could be used for fingerprinting web servers, i.e.,
to predict some of the third-party modules used by a website. This abil-
ity can be useful for an attacker in at least two ways. First, the attacker
may try to temper with the development process of that module by in-
troducing backdoors that can then be exploited in the live website. Given
that npm modules often depend on several others, the vulnerability can
even be hidden in a dependent module. Second, the attacker may exploit
a more serious vulnerability present in the same module. To show how
this scenario may happen, consider the dns-sync vulnerability, identified
in Section 5.4.1. The vulnerable function suffers both from a ReDoS and a
command injection vulnerability, the later type discussed in detail in Chap-
ter 4. An attacker may use the ReDoS attack as a hard-to-detect way to scan
which sites use the vulnerable module and then attack these sites with a
command injection.

5.6 conclusions

This chapter studies ReDoS vulnerabilities in JavaScript-based web servers
and shows that they are an important problem that affects various popular
websites. We exploit eight vulnerabilities that affect at least 339 popular
websites. We show that an attacker could block these vulnerable sites for
several seconds and sometimes even much longer. More generally, our re-
sults are a call-to-arms to address the current lack of tools for analyzing
ReDoS vulnerabilities in JavaScript.
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6
L E A K Y I M A G E S O N T H E C L I E N T- S I D E

This chapter presents a novel client-side attack that exploits the way images
are shared in popular websites. While the attack itself is not specific to full-
stack JavaScript web applications, which are the object of study for this
thesis, its automatic detection requires full-stack security analysis. We do
not provide such a solution here, but we claim that it is much easier to
build such a technique for full-stack JavaScript applications as opposed to
more traditional, e.g., PHP-powered, ones. Therefore, the attack presented
in this chapter serves as an example of sophisticated attacks that require
full-stack analysis for automated detection. This chapter shares material
with the corresponding publication [SP19].

6.1 motivation

Many popular websites allow users to privately share images with each
other. For example, email services allow attachments to emails, most social
networks support photo sharing, and instant messaging systems allow files
to be sent as part of a conversation. We call websites that allow users to
share images with each other image sharing services.

We present a targeted privacy attack that abuses a vulnerability we find
to be common in popular image sharing services. The basic idea is simple
yet effective: An attacker can determine whether a specific person is vis-
iting an attacker-controlled website by checking whether the browser can
access an image shared with this person. We call this attack leaky images,
because a shared image leaks the private information about the victim’s
identity, which otherwise would not be available to the attacker. To launch
a leaky images attack, the attacker privately shares an image with the vic-
tim through an image sharing service where both the attacker and the
victim are registered as users. Then, the attacker includes a request for the
image into the website for which the attacker wants to determine whether
the victim is visiting it. Since only the victim, but no other user, is allowed
to successfully request the image, the attacker knows with 100% certainty
whether the victim has visited the site.
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Threat Who can at-
tack?

What does the at-
tacker achieve?

Usage scenario

Tracking pixels Widely used
ad providers
and web track-
ing services

Learn that user visit-
ing site A is the same
as user visiting site B

Large-scale creation
of low-entropy user
profiles

Social media
fingerprinting

Arbitrary web-
site provider

Learn into which sites
the victim is logged in

Large-scale creation
of low-entropy user
profiles

Cross-site
request forgery

Arbitrary web-
site provider

Perform side effects
on a target site into
which the victim is
logged in

Abuse the victim’s
authorization by act-
ing on her behalf

Leaky images Arbitrary web-
site provider

Precisely identify the
victim

Targeted,
fine-grained
deanonymization

Table 6.1: Leaky images vs. related web attacks. All techniques assume that the
victim visits an attacker-controlled website.

Beyond the basic idea of leaky images, we describe three further attacks.
First, we describe a targeted attack against groups of users, which ad-
dresses the scalability issues of the single-victim attack. Second, we show
a pseudonym linking attack that exploits leaky images shared via different
image sharing services to determine which user accounts across these ser-
vices belong to the same individual. Third, we present a scriptless version
of the attack, which uses only HTML, and hence, works even for users who
disable JavaScript in their browsers.

Leaky images can be (ab)used for targeted attacks in various privacy-
sensitive scenarios. For example, law enforcement could use the attack
to gather evidence that a suspect is visiting particular websites. Similarly
but perhaps less noble, a governmental agency might use the attack to
deanonymize a political dissident. As an example of an attack against a
group, consider deanonymizing reviewers of a conference. In this scenario,
the attacker would gather the email addresses of all committee members
and then share leaky images with each reviewer through some of the vari-
ous websites providing that service. Next, the attacker would embed a link
to an external website into a paper under review, e.g., a link to a website
with additional material. If and when a reviewer visits that page, while
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being logged into one of the image sharing services, the leaky image will
reveal to the attacker who is reviewing the paper. The prerequisite for all
these attacks is that the victim has an account at a vulnerable image shar-
ing service and that the attacker is allowed to share an image with the
victim. We found at least three highly popular services (Google, Microsoft
Live, and Dropbox) that allow sharing images with any registered user,
making it straightforward to implement the above scenarios.

The leak is possible because images are exempted from the same-origin
policy, and because image sharing services authenticate users through
cookies. When the browser makes a third-party image request, it attaches
the user’s cookie of the image sharing website to it. If the decision of
whether to authorize the image request is cookie-dependent, then the at-
tacker can infer the user’s identity by observing the success of the image
request. Related work discusses the dangers of exempting JavaScript from
the same-origin policy [Lek+15], but to the best of our knowledge, there
is no work discussing the privacy implications of observing the result of
cross-origin requests to privately shared images.

Leaky images differ from previously known threats by enabling arbi-
trary website providers to precisely identify a victim (Table 6.1). One re-
lated technique are tracking pixels, which enable tracking services to de-
termine whether two visitors of different sites are the same user. Most
third-party tracking is done by a few major players [EN16], allowing for
regulating the way these trackers handle sensitive data. In contrast, our
attack enables arbitrary attackers and small websites to perform targeted
privacy attacks. Another related technique is social media fingerprinting,
where the attacker learns whether a user is currently logged into a specific
website.1 In contrast, leaky images reveal not only whether a user is logged
in, but precisely which user is logged in. Leaky images resemble cross-site
request forgery (CSRF) [Shi], where a malicious website performs a request
to a target site on behalf of the user. CSRF attacks typically cause side ef-
fects on the server, whereas our attack simply retrieves an image. We dis-
cuss in Section 6.5 under what conditions defenses proposed against CSRF,
as well as other mitigation techniques, can reduce the risk of privacy leaks
due to leaky images.

To understand how widespread the leaky images problem is, we study
30 out of the 250 most popular websites. We create multiple user accounts
on these websites and check whether one user can share a leaky image with

1 See https://robinlinus.github.io/socialmedia-leak/ or https://
browserleaks.com/social.
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another user. The attack is possible if the shared image can be accessed
through a link known to all users sharing the image, and if access to the
image is granted only to certain users. We find that at least eight of the 30

studied sites are affected by the leaky images privacy leak, including some
of the most popular sites, such as Facebook, Google, Twitter, and Dropbox.
We carefully documented the steps for creating leaky images and reported
them as privacy violations to the security teams of the vulnerable websites.
In total, we informed eight websites about the problem, and so far, six
of the reports have been confirmed, and for three of them we have been
awarded bug bounties. Most of the affected websites are in the process of
fixing the leaky images problem, and some of them, e.g., Facebook and
Twitter, have already deployed a fix.

In summary, this chapter makes the following contributions:

• We present leaky images, a novel targeted privacy attack that abuses
image sharing services to determine if a victim visits an attacker-
controlled website.

• We discuss variants of the attack that aim at individual users, groups
of users, that allow an attacker to link user identities across image
sharing services, and that do not require any JavaScript.

• We show that eight popular websites, including Facebook, Twitter,
Google, and Microsoft Live are affected by leaky images, exposing
their users to be identified on third-party websites.

• We propose several ways to mitigate the problem and discuss their
benefits and weaknesses.

6.2 image sharing in the web

Many popular websites, including Dropbox, Google Drive, Twitter, and
Facebook, enable users to upload images and to share these images with a
well-defined set of other users of the same site. Let i be an image, U be the
set of users of an image sharing service, and let ui

owner ∈ U be the owner
of i. By default, i is not accessible to any other users than ui

owner. However,
an owner of an image can share the image with a selected subset of other
users Ui

shared ⊆ U, which we define to include the owner itself. As a result,
all users u ∈ Ui

shared, but no other users of the service and no other web
users, have read access to i, i.e., can download the image via a browser.
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secret urls To control which users can access an image, there are
several implementation strategies. One strategy is to create a secret URL
for each shared image, and to provide this URL only to users allowed to
download the image. In this scenario, there is a set of URLs Li (L stands
for “links”) that point to a shared image i. Any user who knows a URL
li ∈ Li can download i through it. To share an image i with multiple users,
i.e., |Ui

shared| > 1, there are two variants of implementing secret URLs. On
the one hand, each user u may obtain a personal secret URL li

u for the
shared image, which is known only to u and not supposed to be shared
with anyone. On the other hand, all users may share the same secret URL,
i.e., Li = {li

shared}. A variant of secret URLs are URLs that expire after a
given amount of time or after a given number of uses. We call these URLs
session URLs.

authentication Another strategy to control who accesses an image
is to authenticate users. In this scenario, the image sharing service checks
for each request to i whether the request comes from a user in Ui

shared.
Authentication may be used in combination with secret URLs. In this case,
a user u may access an image i only if she knows a secret URL li and if
she is authenticated as u ∈ Ui

shared. The most common way to implement
authentication in image sharing services are cookies. Once a user logs into
the website of an image sharing service, the website stores a cookie in the
user’s browser. When the browser requests an image, the cookie is sent
along with the request to the image sharing service, enabling the server-
side of the website to identify the user.

image sharing in practice Different real-world image sharing ser-
vices implement different strategies for controlling who may access which
image. For example, Facebook mostly uses secret URLs, which initially
created confusion among users due to the apparent lack of access control2.
Gmail relies on a combination of secret URLs and authentication to access
images attached to emails. Deciding how to implement image sharing is
a tradeoff between several design goals, including security, usability, and
performance. The main advantage of using secret URLs only is that third-
party content delivery networks may deliver images, without any cross-
domain access control checks. A drawback of secret URLs is that they
should not be used over non-secret channels, such as HTTP, since these
channels are unable to protect the secrecy of requested URLs. The main ad-

2 https://news.ycombinator.com/item?id=13204283
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vantage of authentication is to not require links to be secret, enabling them
to be sent over insecure channels. On the downside, authentication-based
access control makes using third-party content delivery networks harder,
because cookie-based authentication does not work across domains.

same-origin policy The same-origin policy regulates to what extent
client-side scripts embedded in a website can access the document object
model (DOM). As a default policy, any script loaded from one origin is
not allowed to access parts of the DOM loaded from another origin. Origin
here means the URI scheme (e.g., http), the host name (e.g., facebook.com),
and the port number (e.g., 80). For example, the default policy implies that
a website evil.com that embeds an iframe from facebook.com cannot access
those parts of the DOM that have been loaded from facebook.com. There
are some exceptions to the default policy described above. One of them,
which is crucial for the leaky images attack, are images loaded from third
parties. In contrast to other DOM elements, a script loaded from one ori-
gin can access images loaded from another origin, including whether the
image has been loaded at all. For the above example, evil.com is allowed to
check whether an image requested from facebook.com has been successfully
downloaded.

6.3 privacy attacks via leaky images

This section presents a series of attacks that can be mounted using leaky
images. At first, we describe the conditions under which the attack is pos-
sible (Section 6.3.1). Then, we present a basic attack that targets individual
users (Section 6.3.2), a variant of the attack that targets groups of users (Sec-
tion 6.3.3), and an attack that links identities of an individual registered at
different websites (Section 6.3.4). Next, we show that the attack relies nei-
ther on JavaScript nor CSS, but can be performed by a purely HTML-based
website (Section 6.3.5). Finally, we discuss how leaky images compare to
previous privacy-related issues, such as web tracking (Section 6.3.6).

6.3.1 Attack Surface

Our attack model is that an attacker wants to determine whether a spe-
cific victim is visiting an attacker-controlled website. This information is
important from a privacy point of view and usually not available to oper-
ators of a website. An operator of a website may be able to obtain some
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information about clients visiting the website, e.g., the IP and the browser
version of the client. However, this information is limited, e.g., due to mul-
tiple clients sharing the same IP or the same browser version, and often
insufficient to identify a particular user with high confidence. Moreover,
privacy-aware clients may further obfuscate their traces, e.g., by using the
Tor browser, which hides the IP and other details about the client. Popular
tracking services, such as Google Analytics, also obtain partial knowledge
about which users are visiting which websites. However, the use of this
information is legally regulated, available to only a few tracking services,
and shared with website operators only in anonymized form. In contrast,
the attack considered here enables an arbitrary operator of a website to
determine whether a specific person is visiting the website.

Leaky image attacks are possible whenever all of the following four con-
ditions hold. First, we assume that the attacker and the victim are both
users of the same image sharing service. Since many image sharing ser-
vices provide popular services beyond image sharing, such as email or a
social network, their user bases often cover a significant portion of all web
users. For example, Facebook announced that it has more than 2 billion
registered users3, while Google reported to have more than 1 billion active
Gmail users each month4. Moreover, an attacker targeting a specific victim
can simply register at an image sharing service where the victim is regis-
tered. Second, we assume that the attacker can share an image with the
victim. For many image sharing services, this step involves nothing more
than knowing the email address or user name of the victim, as we dis-
cuss in more detail in Section 6.4. Third, we assume that the victim visits
the attacker-controlled website while the victim’s browser is logged into
the image sharing service. Given the popularity of some image sharing
services and the convenience of being logged in at all times, we believe
that many users fulfill this condition for at least one image sharing service.
In particular, in Google Chrome and the Android operating system, users
are encouraged immediately after installation to login with their Google
account and to remain logged in at all times.

The fourth and final condition for leaky images concerns the way an
image sharing service determines whether a request for an image is from
a user supposed to view that image. Table 6.2 shows a two-dimensional
matrix of possible implementation strategies, based on the description of
secret URLs and authentication-based access control in Section 6.2. In one

3 https://techcrunch.com/2017/06/27/facebook-2-billion-users/
4 https://www.businessinsider.de/gmail-has-1-billion-monthly-
active-users-2016-2
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URL of image

Authenti-
cation (e.g.,
cookies)

Publicly
known

Secret URL
shared among
users

Per-user
secret
URL

Yes (1) Leaky im-
age

(2) Leaky im-
age

(3) Secure

No (4) Irrelevant (5) Secure (6) Secure

Table 6.2: Conditions that enable leaky image attacks.

dimension, a website can either rely on authentication or not. In the other
dimension, the site can make an image available through a publicly known
URL, a secret URL shared among the users allowed to access the image, or
a per-user secret URL. Out of the six cases created by these two dimensions,
five are relevant in practice. The sixth case, sharing an image via a publicly
known URL without any authentication, would make the image available
to all web users, and therefore is out of the scope of this work. The leaky
image attack works in two of the five possible cases in Table 6.2, cases 1

and 2. Specifically, leaky images are enabled by sites that protect shared
images through authentication and that either do not use secret URLs at
all or that use a single secret URL per shared image. Section 6.4 shows
that these cases occur in practice, and that they affect some of today’s most
popular websites.

6.3.2 Targeting a Single User

After introducing the prerequisites for leaky images, we now describe sev-
eral privacy attacks based on them. We start with a basic version of the
attack, which targets a single victim and determines whether the victim
is visiting an attacker-controlled website. To this end, the attacker uploads
an image i to the image sharing service and therefore becomes the owner
of the image, i.e., uattacker = ui

owner. Next, the attacker configures the im-
age sharing service to share i with the victim user uvictim. As a result,
the set of users allowed to access the image is Ui

shared = {uattacker, uvictim}.
Then, the attacker embeds a request for i into the website s for which
the attacker wants to determine whether the victim is visiting the site. Be-
cause images are exempted from the same-origin policy (Section 6.2), the
attacker-controlled parts of s can determine whether the image gets loaded
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1 <script>
2 window.onload = function() {
3 var img = document.getElementById("myPic");
4 img.src = "https://imgsharing.com/leakyImg.png";
5 img.onload = function() {
6 httpReq("evil.com", "is the target");
7 }
8 img.onerror = function() {
9 httpReq("evil.com", "not the target");
10 }
11 }
12 </script>
13 <img id="myPic">

Figure 6.1: Tracking code included in the attacker’s website.

successfully and report this information back to the attacker. Once the vic-
tim visits s, the image request will succeed and the attacker knows that
the victim has visited s. If any other client visits s, though, the image re-
quest fails because s cannot authenticate the client as a user in Ui

shared. We
assume that the attacker does not visit s, as this might mislead the attacker
to believe that the victim is visiting s.

Because the authentication mechanism of the image sharing service en-
sures that only the attacker and the victim can access the image, a leaky
image attack can determine with 100% accuracy whether the targeted vic-
tim has visited the site. At the same time, the victim may not notice that
she was tracked, because the image can be loaded in the background.

For example, Figure 6.1 shows a simple piece of HTML code with embed-
ded JavaScript. The code requests a leaky image, checks whether the image
is successfully loaded, and sends this information back to the attacker-
controlled web server via another HTTP request. We assume httpReq is
a method that performs such a request using standard browser features
such as XMLHttpRequest or innerHTML to send the value of the second
argument to the domain passed as first argument. Alternatively to using
onload to detect whether the image has been loaded, there are several
variations, which, e.g., checking the width or height of the loaded image.
As we show below (Section 6.3.5), the attack is also possible within a purely
HTML-based website, i.e., without JavaScript.

The described attack works because the same-origin policy does not ap-
ply to images. That is, the attacker can include a leaky image through a
cross-origin request into a website and observe whether the image is acces-
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sible or not. In contrast, requesting an HTML document does not cause a
similar privacy leak, since browsers implement a strict separation of HTML
coming from different origins. A second culprit for the attack’s success is
that today’s browsers automatically include the victim’s cookie in third-
party image requests. As a result, the request passes the authentication of
the image sharing service, leaking the fact that the request comes from the
victim’s browser.

6.3.3 Targeting a Group of Users

The following describes a variant of the leaky images attack that targets
a group of users instead of a single user. In this scenario, the attacker
considers a group of n victims and wants to determine which of these
victims is visiting a particular website.

For instance, consider a medium-scale spear phishing campaign against
the employees of a company. After preparing the actual phishing payload,
e.g., personalized emails or cloned websites, the attacker may include a
set of leaky images to better understand which victims interact with the
payload and in which way. In this scenario, leaky images provide a user
experience analysis tool for the attacker.

A naive approach would be to share one image ik (1 ≤ k ≤ n) with
each of the n victims. However, this naive approach does not scale well to
larger sets of users: To track a group of 10,000 users, the attacker needs
10,000 shared images and 10,000 image requests per visit of the website.
In other words, this naive attack has O(n) complexity, both in the number
of leaky images and in the number of requests. For the above example,
this naive way of performing the attack might raise suspicion due to the
degraded performance of the phishing site and the increase in the number
of network requests.

To efficiently attack a group of users, an attacker can use the fact that
image sharing services allow sharing a single image with multiple users.
The basic idea is to encode each victim with a bit vector and to associate
each bit with one shared image. By requesting the images associated with
each bit, the website can compute the bit vector of a user and determine if
the user is among the victims, and if yes, which victim it is. This approach
enables a binary search on the group of users, as illustrated in Figure 6.2
for a group of seven users. The website includes code that requests images
i1, i2, and i3, and then determines based on the availability of the images
which user among the targeted victims has visited the website. If none of
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Request i1

Request i2 Request i2

Request i3 Request i3 Request i3 Request i3

u1 u2 u3 u4 u5 u6 u7 Other user

3 7

3 7 3 7

3 7 3 7 3 7 3 7

Figure 6.2: Binary search to identify individuals in a group of users u1 to u7
through requests to leaky images i1 to i3.

the images is available, then the user is not among the targeted victims.
In contrast to the naive approach, the attack requires O(n) shared images
and only O(log(n)) image requests, enabling the attack on larger groups
of users.

In practice, launching a leaky image attack against a group of users
requires sharing a set of images with different subsets of the targeted users.
This process can be automated, either through APIs provided by image
sharing services or through UI-level web automation scripts. However, this
process will most likely be website-specific which makes it expensive for
attacking multiple websites at once.

6.3.4 Linking User Identities

The third attack based on leaky images aims at linking multiple identi-
ties that a single individual has at different image sharing services. Let
siteA and siteB be two image sharing services, and let usiteA and usiteB be
two user accounts, registered at the two image sharing services, respec-
tively. The attacker wants to determine whether usiteA and usiteB belong to
the same individual. For example, this attack might be performed by law
enforcement entities to check whether a user account that is involved in
criminal activities matches another user account that is known to belong
to a suspect.

To link two user identities, the attacker essentially performs two leaky
image attacks in parallel, one for each image sharing service. Specifically,
the attacker shares an image isiteA with usiteA through one image sharing
service and an image isiteB with usiteB through the other image sharing ser-
vice. The attacker-controlled website requests both isiteA and isiteB. Once the
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1 <!-- Three users (u1, u2, u3) have access to two
2 images (i1, i2) as follows: u1 to (i1);
3 u2 to (i2); u3 to (i1, i2) -->
4 <object data="leaky-domain.com/i1.png">
5 <object data="evil.com?info=not_i1?sid=2342"/>
6 </object>
7 <object data="leaky-domain.com/i2.png">
8 <object data="evil.com?info=not_i2?sid=2342"/>
9 </object>
10
11 <object data="leaky-domain.com/invalidImg.png">
12 <object data="leaky-domain.com/invalidImg2.png">
13 <object data="leaky-domain.com/invalidImg3.png">
14 <object data="evil.com?info=loaded?sid=2342"/>
15 </object>
16 </object>
17 </object>

Figure 6.3: HTML-only variant of the leaky image group attack. All the object
tags should have the type property set to image/png.

targeted individual visits this site, both requests will succeed and establish
the fact that the users usiteA and usiteB correspond to the same individual.
For any other visitors of the site, at least one request will fail because the
two requests only succeed if the browser is logged into both user accounts
usiteA and usiteB.

The basic idea of linking user accounts generalizes to more than two im-
age sharing services and to user accounts of more than a single individual.
For example, by performing two attacks on groups of users, as described
in Section 6.3.3, in parallel, an attacker can establish pairwise relationships
between the two groups of users.

6.3.5 HTML-only Attack

The leaky image attack is based on the ability of a client-side website
to request an image and to report back to the attacker-controlled server-
side whether the request was successful or not. One way to implement
it is using client-side JavaScript code, as shown in Figure 6.1. However,
privacy-aware users may disable JavaScript completely or use a security
mechanism that prevents JavaScript code from reading details about im-
ages loaded from different domains.
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We present a variant of the leaky image attack implemented using only
HTML code, i.e., without any JavaScript or CSS. The idea is to use the
object HTML tag, which allows a website to specify fallback content to
be loaded if there is an error in loading some previously specified con-
tent.5 When nesting such object elements, the browser first requests the
resource specified in the outer element, and in case it fails, it performs a
request to the inner element instead. Essentially, this behavior corresponds
to a logical if-not instruction in pure HTML which an attacker may use to
implement the leaky image attack.

Figure 6.3 shows an example of this attack variant. We assume that there
are three users u1, u2, and u3 in the target group and that the attacker can
share leaky images from leaky-domain.com with each of them. The com-
ment at the beginning of Figure 6.3 specifies the exact sharing configura-
tion. We again need log(n) images to track n users, as for the JavaScript-
based attack against a group of users (Section 6.3.3). We assume that the
server-side generates the attack code upon receiving the request, and that
the generated code contains a session ID as part of the reporting links
pointing to evil.com. In the example, the session ID is 2342. Its purpose is
to enable the server-side code to link multiple requests coming from the
same client.

The main insight of this attack variant is to place a request to the at-
tacker’s domain as fallbacks for leaky image requests. For example, if the
request to the leaky image i1 at line 4 fails, a request is made to evil.com for
an alternative resource in line 5. This request leaks the information that the
current user cannot access i1, i.e., info=not_i1. By performing similar re-
quests for all the leaky images, the attacker leaks enough information for
precisely identifying individual users. For example, if in a given session,
evil.com receives not_i1, but not not_i1, the attacker can conclude that
the user is u2. Because the server-side infers the user from the absence of
requests, it is important to ensure that the current tracking session is suc-
cessfully completed before drawing any conclusions. Specifically, we must
ensure that the user or the browser did not stop the page load before all
the nested object tags were evaluated. One way to ensure this property
is to add a sufficiently high number of nested requests to non-existent im-
ages in lines 11 to 13 followed by a request that informs the attacker that
the tracking is completed, in line 14. The server discards every session that
does not contain this last message.

5 https://html.spec.whatwg.org/multipage/iframe-embed-object.
html#the-object-element

117

https://html.spec.whatwg.org/multipage/iframe-embed-object.html#the-object-element
https://html.spec.whatwg.org/multipage/iframe-embed-object.html#the-object-element


As a proof of concept, we tested the example attack and several variants
of it in the newest Firefox and Chrome browsers and find the HTML-only
attack to work as expected.

6.3.6 Discussion

tracking pixels Leaky images are related to the widely used tracking
pixels, also called web beacons [Cah+16; Eng+15; Yu+16], but both differ
regarding who learns about a user’s identity. A tracking pixel is a small
image that a website s loads from a tracker website strack. The image re-
quest contains the user’s cookie for strack, enabling the tracker to recognize
users across different page visits. As a result, the tracking service can ana-
lyze which pages of s users visit and show this information in aggregated
form to the provider of s. If the tracker also operates services where users
register, it can learn which user visits which site. In contrast, leaky images
enable the operator of a site s to learn that a target user is visiting s, with-
out relying on a tracker to share this information, but by abusing an image
sharing service. As for tracking pixels, an attacker can deploy leaky image
attacks with images of 1x1 pixel size to reduce its impact on page loading
time.

fingerprinting Browser fingerprinting techniques [Aca+13; Aca+14;
CLW17; Eck10; LRB16; MS12; Nik+13] use high-entropy properties of web
browsers, such as the set of installed fonts or the size of the browser win-
dow, to heuristically recognize users. Like fingerprinting, leaky images
aim at undermining the privacy of users. Unlike fingerprinting, the attacks
presented here enable an attacker to determine specific user accounts, in-
stead of recognizing that one visitor is likely to be the same as another
visitor. Furthermore, leaky images can determine a visitor’s identity with
100% certainty, whereas fingerprinting heuristically relies on the entropy
of browser properties.

targeted attacks versus large-scale tracking Leaky images
are well suited for targeted attacks [Blo+14b; Har+14; Mar+14; SE13], but
not for large-scale tracking of millions of users. One reason is that leaky
images require the attacker to share an image with each victim, which is
unlikely to scale beyond several hundreds users. Another reason is that
the number of image requests that a website needs to perform increases
linearly with the number of targeted users, as discussed in Section 6.3.3.
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Hence, instead of aiming at large-scale tracking in the spirit of tracking
pixels or fingerprinting, leaky images are better suited to target (sets of) in-
dividuals. However, this type of targeted attacks is reported to be increas-
ingly popular, especially when dealing with high-value victims [SE13].

6.4 leaky images in popular websites

The attacks presented in the previous section make several assumptions.
In particular, leaky images depend on how real-world image sharing ser-
vices implement access control for shared images. To understand to what
extent popular websites are affected by the privacy problem discussed
in this chapter, we systematically study the prevalence of leaky images.
The following presents our methodology (Section 6.4.1), our main findings
(Section 6.4.2), and discusses our ongoing efforts toward disclosing the de-
tected problems in a responsible way (Section 6.4.3).

6.4.1 Methodology

selection of websites To select popular image sharing services to
study, we examined the top 500 most popular websites, according to the
“Top Moz 500” list6. We focus on websites that enable users to share data
with each other. We exclude sites that do not offer an English language in-
terface and websites that do not offer the possibility to create user accounts.
This selection yields a list of 30 websites, which we study in more detail.
Table 6.3 shows the studied websites, along with their popularity rank. The
list contains all of the six most popular websites, and nine of the ten most
popular websites. Many of the analyzed sites are social media platforms,
services for sharing some kind of data, and communication platforms.

image sharing One condition for our attacks is that an attacker can
share an image with a victim. We carefully analyze the 30 sites in Table 6.3
to check whether a site provides an image sharing service. To this end, we
create multiple accounts on each site and attempt to share images between
these accounts using different channels, e.g., chat windows or social media
shares. Once an image is shared between two accounts, we check if the two
accounts indeed have access to the image. If this requirement is met, we
check that a third account cannot access the image.

6 https://moz.com/top500
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access control mechanism For websites that act as image sharing
services, we check whether the access control of a shared image is im-
plemented in a way that causes leaky images, as presented in Table 6.2.
Specifically, we check whether the access to a shared image is protected
by authentication and whether both users access the image through a com-
mon link, i.e., a link known to the attacker. A site that fulfills also this
condition exposes its users to leaky image attacks.

6.4.2 Prevalence of Leaky Images in the Wild

Among the 30 studied websites, we identify a total of eight websites that
suffer from leaky images. As shown in Table 6.3 (column “Leaky images”),
the affected sites include the three most popular sites, Facebook, Twitter,
and Google, and represent over 25% of all sites that we study. The follow-
ing discusses each of the vulnerable sites in detail and explains how an
attacker can establish a leaky image with a target user. Table 6.4 summa-
rizes the discussion in a concise way.

facebook Images hosted on Facebook are in general delivered by con-
tent delivery networks not hosted at the facebook.com domain, but, e.g.,
at fbcdn.net. Hence, the fact that facebook.com cookie is not sent along
with requests to shared images disables the leaky image attacks. How-
ever, we identified an exception to this rule, where a leaky image can be
placed at https://m.facebook.com/photo/view_full_size/?fbid=xxx.
The fbid is a unique identifier that is associated with each picture on
Facebook, and it is easy to retrieve this identifier from the address bar of
an image page. The attacker must gather this identifier and concatenate it
with the leaky image URL given above. By tweaking the picture’s privacy
settings, the attacker can control the subset of friends that are authorized
to access the image, opening the door for individual and group attacks. A
prerequisite of creating a leaky image on Facebook is that the victim is a
“friend” of the attacker.

twitter Every image sent in a private chat on Twitter is a leaky image.
The victim and the attacker can exchange messages on private chats, and
hence send images, if one of them checked “Receive direct messages from
anyone” in their settings or if one is a follower of the other. An image
sent on a private chat can only be accessed by the two participants, based
on their login state, i.e., these images are leaky images. The attacker can
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Rank Domain Leaky Confirmed Fix Bug
images bounty

1 facebook.com yes yes yes yes
2 twitter.com yes yes yes yes
3 google.com yes yes planned no
4 youtube.com no
5 instagram.com no
6 linkedin.com no
8 pinterest.com no
9 wikipedia.org no

10 wordpress.com yes no no no
15 tumblr.com no
18 vimeo.com no
19 flickr.com no
25 vk.com no
26 reddit.com no
33 blogger.com no
35 github.com yes no no no
39 myspace.com no
54 stumbleupon.com no
65 dropbox.com yes yes planned yes
71 msn.com no
72 slideshare.net no
91 typepad.com no

126 live.com yes yes planned no
152 spotify.com no
160 goodreads.com no
161 scribd.com no
163 imgur.com no
166 photobucket.com no
170 deviantart.com no
217 skype.com yes yes planned no

Table 6.3: List of analyzed websites, whether they suffer from leaky images, and
how the respective security teams have reacted to our notifications
about the privacy leak.
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Domain Prerequisites Image sharing Authentication
channel mechanism

facebook.com Victim and attacker are
"friends"

Image sharing (5), (2)

twitter.com Victim and attacker can
exchange messages

Private message (2)

google.com None Google Drive doc-
ument

(3), (2)

Private message
wordpress.com Victim is a viewer of the

attacker’s private blog
Posts on private
blogs

(2)

github.com Victim and attacker
share a private reposi-
tory

Private reposi-
tory

(3), (2)

dropbox.com None Image sharing (3), (6), (2)
live.com None Shared folder on

OneDrive
(3), (2)

skype.com Victim and attacker can
exchange messages

Private message (2)

Table 6.4: Leaky images in popular websites, the attack’s preconditions, the im-
age sharing channel and the implemented authentication mechanism
as introduced in Table 6.2

easily retrieve the leaky image URL from the conversation and include it in
another page. A limitation of the attack via Twitter is that we are currently
not aware of a way of sharing an image with multiple users at once.

google We identified two leaky image channels on Google’s domains:
one in the thumbnails of Google Drive documents and one in Google Hang-
outs conversations. To share documents with the victim, an attacker only
needs the email address of the victim, while in order to send Hangouts
messages, the victim needs to accept the chat invitation from the attacker.
The thumbnail-based attack is more powerful since it allows to easily add
and remove users to the group of users that have access to an image. More-
over, by unselecting the “Notify people” option when sharing, the victim
users are not even aware of this operation. An advantage of the Hangouts
channel, though, is that the victim has no way to revoke its rights to the
leaky image, once the image has been received in a chat, as opposed to
Drive, where the victim can remove a shared document from her cloud.
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wordpress To create a leaky image via Wordpress, the attacker needs
to convince the victim to become a reader of his blog, or the other way
around. Once this connection is established, every image posted on the
shared private blog is a leaky image between the two users. Fulfilling this
strong prerequisite may require non-trivial social engineering.

github Private repositories on GitHub enable leaky images. Once the
victim and the attacker share a repository, every committed image can be
accessed through a link in the web interface, e.g., https://github.com/
johndoe/my-awesome-project/raw/master/car.jpg. Only users logged
into GitHub who were granted access to the repository my-awesome-project
can access the image. To control the number of users that have access to
the image, the attacker can remove or add contributors to the project.

dropbox Every image uploaded on Dropbox can be accessed through a
leaky image endpoint by appending the HTTP parameter dl=1 to a shared
image URL. Dropbox allows the attacker to share such images with arbi-
trary email addresses and to fine-tune the permissions to access the image
by including and excluding users at any time. Once the image is shared,
our attack can be successfully deployed, without requiring the victim to ac-
cept the shared image. However, the victim can revoke its rights to access
an image by removing it from the “Sharing” section of her account.

live .com Setting up a leaky image on One Drive, a cloud storage plat-
form available on a live.com subdomain, is very similar to the other two file
sharing services that we study, Google Drive and Dropbox. The attacker
can share images with arbitrary email addresses and the victim does not
need to acknowledge the sharing. Moreover, the attacker can easily deploy
a group attack due to the ease in changing the group of users that have
access to a particular image.

skype In the Skype web interface, every image sent in a chat is a leaky
image. Note that most of the users probably access the service through
a desktop or mobile standalone client, hence the impact of this attack is
limited to the web users. Moreover, Skype automatically logs out the user
from time to time, limiting the time window for the attack.

Our study of leaky images in real-world sites enables several observations.
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leaky images are prevalent The first and perhaps most important
observation is that many of the most popular websites allow an attacker to
create leaky images. From an attacker’s point of view, a single leaky image
is sufficient to track a user. If a victim is registered as a user with at least
one of the affected image sharing services, then the attacker can create a
user account at that service and share a leaky image with the victim.

victims may not notice sharing a leaky image Several of the
affected image sharing services enable an attacker to share an image with
a specific user without any notice given to the user. For example, if the
attacker posts an image on her Facebook profile and tweaks the privacy
settings so that only the victim can access it, then the victim is not informed
in any way. Another example is Google Drive, which allows sharing files
with arbitrary email addresses while instructing the website to not send
an email that informs the other user.

victims cannot “unshare” a leaky image For some services, the
victim gets informed in some way that a connection to the attacker has
been established. For example, to set up a leaky image on Twitter, the
attacker needs to send a private message to the victim, which may make
the victim suspicious. However, even if the victim knows about the shared
image, for most websites, there is no way for a user to revoke its right
to access the image. Specifically, let’s assume the victim receives a cute
cat picture from a Google Hangouts contact. Let us now assume that the
victim is aware of the leaky image attack and that she suspects the sender
of the image tracking her. We are not aware of any way in which the victim
can revoke the right to access the received image.

image sharing services use a diverse mix of implementation

strategies Secret URLs and per-user authenticated URLs are widely
implemented techniques that protects against our attack. However, many
websites use multiple such strategies and hence, it is enough if one of
the API endpoints uses leaky images. Identifying this endpoint is often
a hard task: for example, in the case of Facebook, most of the website
rigorously implements secret URLs, but one API endpoint belonging to a
mobile subdomain exposes leaky images. After identifying this endpoint
we realized that it can be accessed without any problem from a desktop
browser as well, enabling all the attacks we describe in Section 6.3.
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the attack surface varies from site to site Some but not all
image sharing services require a trust relation between the attacker and
the victim before a leaky image can be shared. For example, an attacker
must first befriend a victim on Facebook before sharing an image with the
victim, whereas no such requirement exists on Dropbox or Google Drive.
However, considering that most users have hundreds of friends on social
networks, there is a good chance that a trust channel is established before
the attack starts. In the case of Wordpress the prerequisite that the "victim
is a viewer of the attacker’s private blog" appears harder to meet and may
require advanced social engineering. Nonetheless, we believe that such
leaky images may still be relevant in certain targeted attacks. Moreover,
three of the eight vulnerable sites allow attackers to share images with
arbitrary users, without any prerequisites (Table 6.4).

Since our study of the prevalence of leaky images is mostly manual, we
cannot guarantee that the 22 sites for which we could not create a leaky
image are not affected by the problem. For some sites, though, we are con-
fident that they are not affected, as these sites do not allow users to upload
images. A more detailed analysis would require in-depth knowledge of the
implementation of the studied sites, and ideally also access to the server-
side source code. We hope that our results will spur future work on more
automated analyses that identify leaky images.

6.4.3 Responsible Disclosure and Feedback from Websites

After identifying image sharing services that suffer from leaky images, we
contacted their security teams to disclose the problem in a responsible
way. Between March 26 and March 29, 2018, we sent a detailed description
of the general problem, how the specific website can be abused to create
leaky images, and how it may affect the privacy of users of the site. Most
security teams we contacted were very responsive and eager to collaborate
upon fixing the issue.

confirmed reports The last three columns of Table 6.3 summarize
how the security teams of the contacted companies reacted to our reports.
For most of the websites, the security teams confirmed that the reported
vulnerability is worth fixing, and at least six of the sites have already fixed
the problem or have decided to fix it. In particular, the top three websites all
confirmed the reported issue and all have been working on fixing it. Given
the huge user bases of these sites and the privacy implications of leaky
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images for their users, this reaction is perhaps unsurprising. As another
sign of appreciation of our reports, the authors have received bug bounties
from (so far) three of the eight affected sites.

dismissed reports Two of our reports were flagged as false positives.
The security teams of the corresponding websites replied by saying that
leaky images are a “desired behavior” or that the impact on privacy of
their user is limited. Comparing Table 6.3 with Table 6.4 shows that the
sites that dismiss our report are those where the prerequisites for creating
a leaky image are harder to fulfill than for the other sites: Creating a leaky
image on GitHub requires the attacker and the victim to share a private
repository, and Wordpress requires that the victim is a viewer of the at-
tacker’s private blog. While we agree that the attack surface is relatively
small for these two sites, leaky images may nevertheless cause surprising
privacy leaks. For example, an employee might track her colleagues or
even her boss if their company uses private GitHub repositories.

case study : fix by facebook To illustrate how image sharing ser-
vices may fix a leaky images problem, we describe how Facebook ad-
dressed the problem in reaction to our report. As mentioned earlier, Face-
book employs mostly secret URLs and uses content delivery networks to
serve images. However, we were able to identify a mobile API endpoint
that uses leaky images and redirects the user to the corresponding content
delivery network link. This endpoint is used in the mobile user interface
for enabling users to download the full resolution version of an image.
The redirection was performed at HTTP level, hence it resulted in a suc-
cessful image request when inserted in a third-party website using the <a>
HTML tag. The fix deployed by Facebook was to perform a redirection at
JavaScript level, i.e. load an intermediate HTML that contains a JavaScript
snippet that rewrites document.location.href. This fix enables a be-
nign user to still successfully download the full resolution image through
a browser request, but disables third-party image inclusions. However, we
believe that such a fix does not generalize and cannot be deployed to the
other identified vulnerabilities. Hence, we describe alternative ways to pro-
tect against a leaky image attacks in Section 6.5.

case study : fix by twitter A second case study of how websites can
move away from leaky images comes from Twitter that changed its API7

7 https://twitter.com/TwitterAPI/status/1039631353141112832
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in response to our report8. First, they disabled cookie-based authentication
for images. Second, they changed the API in a way that image URLs are
only delivered on secure channels, i.e., only authenticated HTTPS requests.
Last, Twitter also changed the user interface to only render images from
strangers when explicit consent is given. Essentially, Twitter moved from
implementation strategy (2) to (5) in Table 6.2 in response to our report.

Overall, we conclude from our experience of disclosing leaky images that
popular websites consider it to be a serious privacy problem, and that they
are interested in detecting and avoiding leaky images.

6.5 mitigation techniques

In this section, we describe several techniques to defend against leaky im-
age attacks. The mitigations range from server-side fixes that websites can
deploy, over improved privacy settings that empower users to control what
is shared with them, to browser-based mitigations.

6.5.1 Server-Side Mitigations

The perhaps easiest way to defend against the attack presented in this
chapter is to modify the server-side implementation of an image sharing
service, so that it is not possible anymore to create leaky images. There are
multiple courses of actions to approach this issue.

First, a controversial fix to the problem is to disable authenticated image
requests altogether. Instead of relying on, e.g., cookies to control who can
access an image, an image sharing service could deliver secret links only
to those users that should access an image. Once a user knows the link
she can freely get the image through the link, independent of whether she
is logged into the image sharing service or not. This strategy corresponds
to case 5 in Table 6.2. Multiple websites we report about in Table 6.3 im-
plement such an image sharing strategy. The most notable examples are
Facebook, which employs this technique in most parts of their website,
and Dropbox, which implements this technique as part of their link shar-
ing functionality. The drawback of this fix is that the link’s secrecy might be
compromised in several ways outside of the control of the image sharing
service: by using insecure channels, such as HTTP, through side-channel
attacks in the browser, such as cache attacks [Koc+19], or simply by having

8 https://hackerone.com/reports/329957
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the users handle the links in an insecure way because they are not aware
of the secrecy requirements.

Second, an alternative fix is to enforce an even stricter cookie-based
access control on the server-side. In this case, the image sharing service
enforces that each user accesses a shared image through a secret, user-
specific link that is not shared between users. As a result, the attacker does
not know which link the victim could use to access a shared image, and
therefore the attacker cannot embed such a link in any website. This im-
plementation strategy corresponds to case 3 in Table 6.2. On the downside,
implementing this defense may prove challenging due to the additional
requirement of guaranteeing the mapping between users and URLs, espe-
cially when content delivery networks are involved. Additionally, it may
cause a slowdown for each image request due to the added access control
mechanism.

Third, one may deploy mitigations against CSRF.9 One of them is to
use the origin HTTP header to ensure that the given image can only
be embedded on specific websites. The origin HTTP header is sent au-
tomatically by the browser with every request, and it precisely identifies
the page that requests a resource. The server-side can check the request’s
origin and refuse to respond with an authenticated image to unknown
third-party request. For example, facebook.com could refuse to respond
with a valid image to an HTTP request with the origin set to evil.com.
However, this mitigation cannot defend against tracking code injected into
a trusted domain. For example, until recently Facebook allowed users to
post custom HTML code on their profile page. If a user decides to insert
leaky image-based tracking code on the profile page, to be notified when a
target user visits the profile page, then the CSRF-style mitigation does not
prevent the attack. The reason for this is that the request’s origin would
be set to facebook.com, and hence the server-side code will trust the page
and serve the image.

Similarly, the server can set the Cross-Origin-Resource-Policy re-
sponse header on authenticated image requests and thus limit which web-
sites can include a specific image. Browsers will only render images for
which the origin of the request matches the origin of the embedding web-
site or if they correspond to the same site. This solution is more coarse-
grained than the previously discussed origin checking since it does not
allow for cross-origin integration of authenticated images, but it is easier

9 https://www.owasp.org/index.php/Cross-Site_Request_Forgery_
(CSRF)_Prevention_Cheat_Sheet
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to deploy since it only requires a header set instead of a header check. The
From-Origin header was proposed for allowing a more fine-grained in-
tegration policy, but to this date there is no interest from browser vendors
side to implement such a feature.

Another applicable CSRF mitigation is the SameSite cookie attribute.
When set to “strict” for a cookie, the attribute prevents the browser from
sending the cookie along with cross-site requests, which effectively pre-
vents leaky images. However, the “strict” setting may be too strict for most
image sharing services, because it affects all links to the service’s website.
For example, a link in a corporate email to a private GitHub project or
to a private Google Doc would not work anymore, because when clicking
the link, the session cookie is not sent along with the request. The less re-
strictive “lax” setting of the SameSite attribute does not suffer from these
problems, but it also does not prevent leaky images attacks, as it does not
affect GET requests.

A challenge with all the described server-side defenses is that they re-
quire the developers to be aware of the vulnerability in the first place. From
our experience, a complex website may allow sharing images in several
ways, possibly spanning different UI-level user interactions and different
API endpoints supported by the image sharing service. Since rigorously
inspecting all possible ways to share an image is non-trivial, we see a need
for future work on automatically identifying leaky images. At least parts
of the methodology we propose could be automated with limited effort.
To check whether an image request requires authentication, one can per-
form the request in one browser where the user is logged in, and then try
the same request in another instance of the browser in “private” or “incog-
nito” mode, i.e., without being logged in. Comparing the success of the two
requests reveals whether the image request relies in any form of authenti-
cation, such as cookies. Automating the rest of our methodology requires
some support by image sharing services. In particular, automatically check-
ing that a leaky image is accessible only by a subset of a website’s users,
requires APIs to handle user accounts and to share images between users.

Despite the challenges in automatically identifying leaky images, we be-
lieve that server-side mitigations are the most straightforward solution, at
least in the short term. In the long term, a more complete solution would
be desirable, such as those described in the following.
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6.5.2 Browser Mitigations

The current HTTP standard does not specify a policy for third-party cook-
ies10, but it encourages browser vendors to experiment with different such
policies. More precisely, the standard lets the browser decide whether
to automatically attach the user’s cookie to third-party requests. Most
browsers decide to attach third-party cookies, but there are certain counter-
examples, such as the Tor browser. In Tor, cookies are sent only to the
domain typed by the user in the address bar.

Considering the possible privacy implications of leaky images and other
previously reported tracking techniques [Cah+16], one possible mitigation
would be that browsers specify as default behavior to not send cookies
with third-party (image) requests. If this behavior is overwritten, possibly
using a special HTTP header or tag, the user should be informed through
a transparent mechanism. Moreover, the user should be offered the pos-
sibility to prevent the website from overwriting the default behavior. We
believe this measure would be in the spirit of the newly adopted European
Union’s General Data Protection Regulation which requires data protection
by design and by default. However, such an extreme move may impact certain
players in the web ecosystem, such as the advertisement ecosystem. To ad-
dress this issue, advertisers may decide to move towards safer distribution
mechanisms, such as the one popularized by the Brave browser.

An alternative to the previously discussed policy is to allow authenti-
cated image requests, but only render them if the browser is confident that
there are no observable differences between an authenticated request and
a non-authenticated one. To this end, the browser could perform two im-
age requests instead of one: one request with third-party cookies and one
request without. If the browser receives two equivalent responses, it can
safely render the content, since no sensitive information is leaked about
the authenticated user. This solution would still allow most of the usages
of third-party cookies, e.g. tracking pixels, but prevent the leaky image
attack described here. A possible downside might be the false positives
due to strategy (3) in Table 6.2, but we hypothesize that requests to such
images rarely appear in benign third-party image requests. A second pos-
sible drawback of this solution may be the increase in web traffic and the
potential performance penalties. Future work should test the benefits of
this defense and the cost imposed by the additional image request.

10 https://tools.ietf.org/html/rfc6265#page-28
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To reduce the cost imposed by an additional image request, a hybrid
mechanism could disable authenticated image requests by default, and
allow them only for the resources specified by a CSP directive. For the
allowed authenticated images, the browser deploys the double image re-
quests mechanism described earlier. We advocate this as our preferred
browser-level defense since it can also defend against other privacy attacks,
e.g. reading third-party image pixels through a side channel [Kot+13],
while still permitting benign uses.

Similarly to ShareMeNot [RKW12], one can also implement a browser
mechanism in which all third-party image requests are blocked unless the
user authorizes them by providing explicit consent. To release the burden
from the user, a hybrid mechanism can be deployed in which the website
requires authenticated requests only for a subset of images for which the
user needs to provide consent.

Another solution for when third-party cookies are allowed is for the
browsers to implement some form of information flow control to ensure
that the fact whether a third-party request was successfully loaded or not,
cannot be sent outside of the browser. A similar approach is deployed in
tainted canvas11, which disallows pixel reads after a third-party image is
painted on the canvas. Implementing such an information flow control for
third-party images may, however, be challenging in practice, since the fact
whether an image has successfully loaded or not can be retrieved through
multiple side channels, such as the object tag or by reading the size of
the contained div.

The mechanisms described in this section vary both in terms of imple-
mentation effort required for deploying them and in terms of their possible
impact on the existing state of the web, i.e., incompatibility with existing
websites. Therefore, to aid the browser vendors to take an informed deci-
sion, future work should perform an in-depth analysis of all these defenses
in terms of usability, compatibility and deployment cost, in the style of
Calzavara et al. [Cal+17], and possibly propose additional solutions.

6.5.3 Better Privacy Control for Users

A worrisome finding of our prevalence study is that a user has little con-
trol over the image sharing process. For example, for some image sharing
services, the user does not have any option to restrict which other users

11 https://html.spec.whatwg.org/multipage/canvas.html#security-
with-canvas-elements
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can privately share an image with her. In others, there is no way for a user
to revoke her right to access a specific image. Moreover, in most of the
websites we analyzed, it is difficult to even obtain a complete list of im-
ages privately shared with the current account. For example, a motivated
user who wants to obtain this list must check all the conversations in a
messaging platform, or all the images of all friends on a social network.

We believe that image sharing services should provide users more con-
trol over image sharing policies, to enable privacy-aware users to protect
their privacy. Specifically, a user should be allowed to decide who has the
right to share an image with her and she should be granted the right to
revoke her access to a given image. Ideally, websites would also offer the
user a list of all the images shared with her and a transparent notification
mechanism that announces the user when certain changes are made to
this list. Empowering the users with these tools may help mitigate some of
the leaky image attacks by attracting user’s attention to suspicious image
sharing, allowing users to revoke access to leaky images.

The privacy controls for web users presented in this section will be use-
ful mostly for advanced users, while the majority of the users are unlikely
to take advantage of such fine-grained controls. Therefore, we believe that
the most effective mitigations against leaky images are at the server side
or browser level.

6.6 conclusions

This chapter presents leaky images, a targeted deanonymization attack that
leverages specific access control practices employed in popular websites.
The main insight of the attack is a simple yet effective observation: Pri-
vately shared resources that are exempted from the same origin policy
can be exploited to reveal whether a specific user is visiting an attacker-
controlled website. We describe several flavors of this attack: targeted track-
ing of single users, group tracking, pseudonym linking, and an HTML-
only attack.

We show that some of the most popular websites suffer from leaky im-
ages, and that the problem often affects any registered users of these web-
sites. We reported all the identified vulnerabilities to the security teams of
the affected websites. Most of them acknowledge the problem and some
already proceeded to fixing it. This feedback shows that the problem we
identified is important to practitioners. Our work helps raising awareness
among developers and researchers to avoid this privacy issue in the future.
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7
D E F E N D I N G A G A I N S T I N J E C T I O N AT TA C K S

Chapter 4 shows that the risk of injection vulnerabilities is widespread, and
that a practical technique to mitigate them must support module maintain-
ers who are not particularly responsive. Given these conclusions about the
development process around Node.js modules, it is crucial to offer a so-
lution that provides complete automation. This chapter presents Synode,
an automatic approach to identify potential injection vulnerabilities and
to prevent injection attacks. To the best of our knowledge, our approach
is the first to address the problem of injection vulnerabilities in Node.js
JavaScript code. This chapter shares material with the corresponding pub-
lication [SPL18].

The basic idea of Synode is to check all third-party modules as part of
their installation and to rewrite them to enable a safe mode proposed in this
chapter. A mix of two strategies is applied as part of rewriting.

• Static: we statically analyze the values that may be passed to APIs
prone to injections. The static analysis also extracts a template that
describes values passed to these dangerous APIs.

• Runtime: for code locations where the static analysis cannot ensure
the absence of injections, we offer a dynamic enforcement mechanism
that stops malicious inputs before passing them to the APIs.

A combination of these techniques is applied to a module at the time of in-
stallation via Node.js installation hooks, effectively enforcing a safe mode
for third-party modules. In principle, while our runtime enforcement may
be overly conservative, our evaluation in Section 7.5 shows that such cases
are rare.

Alternative approaches: There are several alternatives to our hybrid anal-
ysis. One alternative is a sound static analysis that conservatively rejects
all Node.js modules for which the analysis cannot guarantee the absence
of injection vulnerabilities. Unfortunately, due to the dynamic features
of JavaScript [And+17], a reasonably precise static analysis is virtually
never sound [And+17; Wei15], whereas a fully sound analysis would re-
sult in many false positives. Another alternative is a training-based ap-
proach that learns from safe executions which values are safe to pass
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Figure 7.1: Architectural diagram of Synode.

to APIs prone to injections. While this approach works well for client-
side JavaScript [Mit+16; Pan+16; SBS15], where a lot of runtime behav-
ior gets triggered by loading the page, relying on training is challenging
for Node.js code, which often comes without any inputs to execute the
code. Finally, security-aware developers could resort to manually analyz-
ing third-party modules for potential vulnerabilities. However, manual in-
spection does not scale well to the large number of modules available for
Node.js and suffers from human mistakes. Instead of these alternatives,
Synode takes a best-effort approach in the spirit of soundiness [Liv+15]
that guarantees neither to detect all vulnerabilities nor to reject only mali-
cious inputs. Our experimental evaluation shows that, in practice, Synode

rejects very few benign inputs and detects all malicious inputs used during
the evaluation.

Synode relates to existing work aimed at discovering and preventing
code injections in JavaScript [GL09; LV09; SML11]. The closest existing
approaches, Blueprint [LV09] and ScriptGard [SML11], share the idea of
restricting runtime behavior based on automatically inferred templates. In
contrast to them, Synode infers templates statically, i.e., without relying
on inputs that drive the execution during template inference. Our work
differs from purely static approaches [GL09] by defering some checks to
runtime instead of rejecting potentially benign code. Moreover, all existing
work addresses XSS vulnerabilities, whereas we address injection attacks
on Node.js code.
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Contributions:

• Static analysis: We present a static analysis that attempts to infer
templates of user inputs used at potentially dangerous sinks. (Sec-
tion 7.2)

• Runtime enforcement: For cases that cannot be shown safe via static
analysis, we present a runtime enforcement achieved through code
rewriting. The runtime approach uses partially instantiated abstract
syntax trees (ASTs) and ensures that the runtime values do not intro-
duce any unwanted code beyond what is expected. (Section 7.3.2)

• Evaluation: We apply our static technique to a set of 15,604 Node.js
modules that contain calls to sinks. We discover that 36.66% of the
sink call sites are statically guaranteed to be safe. For a subset of
the statically unsafe modules, we create both malicious inputs that
exploit the injection vulnerabilities and benign inputs that exercise
the advertised functionality of the module. Our runtime mechanism
effectively prevents 100% of the attacks, while being overly conserva-
tive for only 8.92% of the benign inputs.

Our implementation and a benchmark suite containing both malicious
and benign inputs passed to the vulnerable modules is available for down-
load:

https://github.com/sola-da/Synode

7.1 methodology

The overall idea of the mitigation technique is to prevent injections at the
call sites of injection APIs. Figure 7.1 shows an overview of the approach.
Given a potentially vulnerable JavaScript module, a static analysis sum-
marizes the values that may flow into injection APIs in the form of string
templates, or short templates. A template is a sequence consisting of string
constants and holes to be filled with untrusted runtime data. For call sites
where the analysis can statically show that no untrusted data may flow
into the injection API, no further action is required to ensure safe runtime
behavior. Similar approaches for identifying statically safe call sites are
adopted in practice for other languages, e.g., Java1 and Python2.

1 https://www.youtube.com/watch?v=ccfEu-Jj0as
2 https://github.com/dropbox/python-invariant

137

https://github.com/sola-da/Synode
https://www.youtube.com/watch?v=ccfEu-Jj0as
https://github.com/dropbox/python-invariant


For the remaining call sites, the approach synthesizes a runtime check
and statically rewrites the source code to perform this check before un-
trusted data reaches the injection API. When executing the module, the
rewritten code enforces a security policy that checks the runtime values to
be filled into the holes of the template against the statically extracted tem-
plate. If this check fails, the program is terminated to prevent an injection
attack.

The Synode approach is conservative in the sense that it prevents po-
tential vulnerabilities without certain knowledge of whether a vulnerabil-
ity gets exploited by an attacker. The reason for this design decision is
twofold. First, most Node.js modules are used in combination with other
modules, i.e., we cannot reason about the entire program. Second, there
is no trust model that specifies which module should sanitize untrusted
inputs or even which inputs are untrusted. Our assumption is that user in-
puts and inputs from other modules are potentially attacker-controlled, an
assumption shared by the vulnerabilities published at the Node Security
Platform. Given these constraints and assumptions, Synode protects users
of potentially vulnerable modules in an automatic way.

7.2 static analysis

We present a static analysis of values passed to injection APIs. For each call
site of such an API, the analysis summarizes all values that may be passed
to the called function into a tree representation (Section 7.2.1). Then, the
analysis statically evaluates the tree to obtain a set of templates, which rep-
resent the statically known and unknown parts of the possible string values
passed to the function (Section 7.2.2). Finally, based on the templates, the
analysis decides for each call site of an injection API whether it is statically
safe or whether to insert a runtime check that prevents malicious strings
from reaching the API (Section 7.2.3).

7.2.1 Extracting Template Trees

The analysis is a flow-sensitive, path-insensitive, intra-procedural, back-
ward data flow analysis. Starting from a call site of an injection API, the
analysis propagates information about the possible values of the string
argument passed to the API call along inverse control flow edges. The
propagated information is a tree that represents the current knowledge of
the analysis about the value:
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"ls -l"

(a) Constant string.

+

$cmd " -l"

(b) Concatenation of variable and constant.

+

"messages.backup_" ALT

"pics" "other"

(c) Argument of eval in Figure 4.1.

join

push " "

push "~/.localBackup"

push +

empty array "cp" $name "." $ext

(d) Argument of exec in Figure 4.1.

Figure 7.2: Examples of template trees.

Definition 7.2.1 (Template tree) A template tree is an acyclic, connected, di-
rected graph (N , E) where

• a node n ∈ N represents a string constant, a symbolic variable, an operator,
or an alternative, and

• an edge e ∈ E represents a nesting relationship between two nodes.

Figure 7.2 shows several examples of template trees:

• Example (a) represents a value known to be a string constant "ls
-l". The template tree consist of a single node labeled with this
string.

• In example (b), the analysis knows that the value is the result of
concatenating the value of a symbolic variable $cmd and the string
constant " -l". The root node of the template tree is a concatenation
operator, which has two child nodes: a symbolic variable node and a
string constant node.

• Example (c) shows the tree that the analysis extracts for the values
that may be passed to eval at line 10 of Figure 4.1. Because the value
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Example Templates

(a) ta1 = ["ls -l"]

(b) tb1 = [$cmd," -l"]

(c) tc1 = ["messages.backup_pics"]

tc2 = ["messages.backup_other"]

(d) td1 = ["cp ", $name,".", $ext, ,

" ~/.localBackup"]

Figure 7.3: Evaluated templates for the examples in Figure 7.2.

depends on the condition checked at line 9, the tree has an alternative
node with children that represent the two possible string values.

• Finally, example (d) is the tree extracted for the value passed to exec
at line 7 of Figure 4.1. This tree contains several operation nodes that
represent the push operations and the string concatenation that are
used to construct the string value, as well as several symbolic variable
nodes and string constant nodes.

To extract such templates trees automatically, we use a data flow analy-
sis [ASU86; NNH05], which propagates template trees through the pro-
gram. Starting at a call site of an injection API with an empty tree, the
analysis applies the following transfer functions:

• Constants. Reading a string constant yields a node that represents the
value of the constant.

• Variables. A read of a local variable or a function parameter yields a
node that represents a symbolic variable.

• Operations. Applying an operation, such as concatenating two strings
with +, yields a tree where the root node represents the operator and
its children represent the operands.

• Calls. A call of a function yields a tree where the root node represents
the called function and its children represent the base object and
arguments of the call.
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• Assignments. An assignment of the form lhs = rhs transforms the
current tree by replacing any occurrence of the symbolic variable
that corresponds to lhs by the tree that results from applying the
transition function to rhs.

Whenever the backward control flow merges, the analysis merges the two
template trees of the merged branches. The merge operation inserts an
alternative node that has the two merged trees as its children. To avoid
duplicating subtrees with identical information, the analysis traverses the
two given trees t1 and t2 to find the smallest pair of subtrees t′1 and t′2 that
contain all differences between t1 and t2, and then inserts the alternative
node as the parent of t′1 and t′2.

Template tree construction example. For example, consider the call site
of eval at line 10 of Figure 4.1. Starting from an empty tree, the analysis
replaces the empty tree with a tree that represents the string concatena-
tion at line 10. One child of this tree is a variable node that represents the
variable kind, which has an unknown value at this point. Then, the anal-
ysis reasons backwards and follows the two control flow paths that assign
"pics" and "other" to the variable kind, respectively. For each path,
the analysis updates the respective tree by replacing the variable node for
kind with the now known string constant. Finally, the variable reaches
the merge point of the backward control flow and merges the two trees by
inserting an alternative node, which yields the tree in Figure 7.2c.

7.2.2 Evaluating Template Trees

Based on the template trees extracted by the backward data flow analysis,
the second step of the static analysis is to evaluate the tree for each call
site of an injection API. The result of this evaluation process is a set of
templates:

Definition 7.2.2 (Template) A template is a sequence t = [c1, . . . , ck] where
each ci represents either a constant string or an unknown value (hole).

For example, the template trees in Figure 7.2 are evaluated to the tem-
plates in Figure 7.3. To obtain the templates for a given tree, the analysis
iteratively evaluates subtrees in a bottom-up way until reaching the root
node. The evaluation replaces operation nodes that have a known seman-
tics with the result of the operation. Our implementation currently models
the semantics of string concatenation, Array.push, Array.join, and
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String.replace where the arguments are constant strings. These opera-
tions cover most templates trees that the analysis extracts from real-world
JavaScript code (Section 7.5.1). For alternative nodes, the evaluation con-
siders both cases separately, duplicating the number of template trees that
result from the evaluation.

Finally, the analysis transforms each evaluated tree into a template by
joining continuous sequences of characters into constant strings and by
representing all symbolic values and unknown operations between these
constants as unknown values.

7.2.3 Identifying Statically Safe Calls

After evaluating template trees, the analysis knows for each call site of an
injection API the set of templates that represent the string values passed
to the call. If all templates for a particular call site are constant strings, i.e.,
there are no unknown parts in the template, then the analysis concludes
that the call site is statically safe. For such statically safe call sites, no run-
time checking is required. In contrast, the analysis cannot statically ensure
the absence of injections if the templates contain unknown values. In this
case, checking is deferred to runtime, as explained in Section 7.3.

For our running example, the analysis determines that the eval call
site at line 10 of Figure 4.1 is statically safe because both possible values
passed to the function are known. In contrast, parts of the strings that may
be passed to exec at line 7 are unknown and therefore the check whether
an injection happens is deferred to runtime.

7.3 dynamic enforcement

For call sites where the values passed to the injection API cannot be stat-
ically determined, we provide a dynamic enforcement mechanism. The
goal of this mechanism is to reject values found to be dangerous according
to a policy. Intuitively, we want to prevent values that expand the template
computed for the call site in a way that is likely to be unforeseen by the
developer. Our approach achieves this goal in two steps:

1. Before executing the module, the approach transforms the statically
extracted set of templates for a call site into a set of partial abstract
syntax trees (PAST) that represents the expected structure of benign
values. The trees are partial because the unknown parts of the tem-
plate are represented as unknown subtrees.
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2. While executing the module, the approach parses the runtime value
passed to an injection API into an AST and compares the PASTs from
step 1 against the AST. The runtime mechanism enforces a policy that
ensures that the runtime AST is (i) derivable from at least one of the
PASTs by expanding the unknown subtrees and (ii) these expansions
remain within an allowed subset of all possible AST nodes.

The following two subsections present the two steps of the dynamic en-
forcement mechanism in detail.

7.3.1 Synthesizing a Tree-based Policy

The goal of the first step is to synthesize for each call site a set of trees
that represents the benign values that may be passed to the injection API.
Formally, we define these trees as follows:

Definition 7.3.1 (Partial AST) The partial AST (PAST) for a template of an
injection API call site is an acyclic, connected, directed graph (N , E) where

• Nsub ⊆ N is a set of nodes that each represent a subtree of which only the
root node nsub ∈ Nsub is known, and

• (N , E) is a tree that can be expanded into a valid AST of the language
accepted by the API.

For example, Figure 7.4a shows the PAST for the template td1 from Fig-
ure 7.3. For this partial tree, Nsub = {HOLE}, i.e., the hole node can be
further expanded, but all the other nodes are fixed.

To synthesize the PAST for a template, the approach performs the follow-
ing steps. At first, it instantiates the template by filling its unknown parts
with simple string values known to be benign. The set of known benign
values must be defined only once for each injection API. Figure 7.5 shows
the set of values we use for exec and eval, respectively. The approach
exhaustively tries all possible assignments of these values to the unknown
parts of a template. Then, each of the resulting strings is given to a parser
of the language, e.g., a JavaScript or Bash parser. If and only if the string is
accepted as a legal member of the language, then the approach stores the
resulting AST into a set of legal example ASTs.

Given the legal example ASTs for a template, the next step is to merge
all of them into a single PAST. To this end, the approach identifies the least
common nodes of all ASTs, i.e., nodes that are shared by all ASTs but that
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(a) Partial AST for the template
in Figure 7.3.
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(c) AST rejected by the policy derived
from the partial AST.

command

literal
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list

literal literal

file.txt ~/.localBackup
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(d) AST rejected by the policy derived from the partial AST.

Figure 7.4: A partial AST and three ASTs compared against it. The blue nodes
are holes and runtime values filled into the holes at runtime.
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API Language Known benign values

exec Bash "./file.txt", "ls"

eval JavaScript x, y, "x", x.p, {x:23}, 23

Figure 7.5: Known benign values used to synthesize PASTs.

have a subtree that differs across the ASTs. At first, the given ASTs are
aligned by their root nodes, which must match because all ASTs belong to
the same language. Then, the approach simultaneously traverses all ASTs
in a depth-first manner and searches for nodes nlc with children that differ
across at least two of the ASTs. Each such node nlc is a least common node.
Finally, the approach creates a single PAST that contains the common parts
of all ASTs and where the least common nodes remain unexpanded and
form the set Nsub (Definition 7.3.1). Note that Nsub is effectively an under-
approximation of the possible valid inputs, given that we construct it using
a small number of known benign inputs. However, in practice we do not
observe any downsides to this approach, as discussed in Section 7.5.

Policy synthesizing example. For example, for the template td1 and the
known benign inputs for Bash in Figure 7.5, the first argument passed to
cp will be expanded to the following values: ./file.txt.ls, ls.ls,
./file.txt../file.txt and ls../file.txt. All these values are
valid literals according to the Bash grammar, i.e., we obtain four legal ex-
ample ASTs. By merging these ASTs, the approach obtains the PAST in
Figure 7.4a because the only variations observed across the four ASTs are
in the value of the literal.

7.3.2 Checking Runtime Values Against the Policy

The set of PASTs synthesized for a call site is the basis of a policy that our
mechanism enforces for each string passed at the call site. We implement
this enforcement by rewriting the underlying JavaScript code at the call
site. When a runtime value reaches the rewritten call site, then the runtime
mechanism parses it into an AST and compares it with the PASTs of the
call site. During this comparison, the policy enforces two properties:

• P1: The runtime value must be a syntactically valid expansion of
any of the available PASTs. Such an expansion assigns to each node
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nsub ∈ Nsub a subtree so that the resulting tree (i) is legal according to
the language and (ii) structurally matches the runtime value’s AST.

• P2: The expansion of a node nsub of the PAST is restricted to con-
tain only AST nodes from a pre-defined set of safe node types. The
set of safe node types is defined once per language, i.e., it is inde-
pendent of the specific call site and its PASTs. For shell commands
passed to exec, we consider only nodes that represent literals as safe.
For JavaScript code passed to eval, we allow all AST node types
that occur in JSON code, i.e., literals, identifiers, properties, array ex-
pressions, object expressions, member expressions, and expression
statements. The rationale for choosing safe node types is to prevent
an attacker from injecting code that has side effects. With the above
safe node types, an attacker can neither call or define functions, nor
update the values of properties or variables. As noted in previous
work [RL12], such a restrictive mechanism may cause false positives,
which we find to be manageable in practice though.

Policy checking example. To illustrate these properties, suppose that the
three example inputs in Figure 7.6 are given to the backupFile function
in Figure 4.1. Input 1 uses the function as expected by the developer. In
contrast, inputs 2 and 3 exploit the vulnerability in the call to exec by
passing data that will cause an additional command to be executed. Fig-
ure 7.4 shows the PAST derived (only one because there is only one tem-
plate available for this call site) for the vulnerable call site and the ASTs of
the three example inputs. Input 1 fulfills both P1 and P2 and the value is
accepted. In contrast, the policy rejects input 2 because it does not fulfill P1.
The reason is that the AST of the input (Figure 7.4d) does not structurally
match the PAST. Likewise, the policy rejects input 3 because it fulfills P1

but not P2. The reason for not fulfilling P2 is that the expanded subtree
(i.e., the highlighted nodes in Figure 7.4c) contain nodes that are not in the
set of safe node types.

To summarize, the enforced policy can be formalized as follows:

Definition 7.3.2 (Security Policy) Given a runtime value v, a set of PASTs T ,
and a set Nsa f e of safe node types, v is rejected unless there exists an expansion
t′ of some t ∈ T , where

• t′ is isomorphic to the AST of v, and
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ID name ext Property

P1 P2

1 file txt 3 3

2 file txt || rm * -rf 7 –

3 file $(rm * -rf) 3 7

Figure 7.6: Inputs compared against the partial AST in Figure 7.4a.

• let Ninput be the set of nodes that belong to a subtree in the AST of v that
matches a node in Nsub ∈ t, then the node type of all n ∈ Ninput is in
Nsa f e.

Our runtime enforcement approach can be applied to any kind of injection
API that expects string values specified by a context-free grammar. The
effectiveness of the enforcement depends on two language-specific ingre-
dients: the set of benign example inputs and the set of safe AST node types.
Given that we are primarily interested in eval and exec sinks, we have
created these ingredients for JavaScript and Bash, and Section 7.5.2 shows
both to be effective for real-world Node.js code.

7.4 implementation

Static analysis: We implement the static analysis in Java, building upon
the Google Closure Compiler3. The analysis is an intraprocedural, back-
ward data flow analysis, as described in Section 7.2.1. The states propa-
gated along the control flow edges are sets of template trees and the join
operation is the union of these sets. To handle loops and recursion, the
static data flow analysis limits the number of times a statement is revis-
ited while computing a particular data flow fact to ten. When applying the
static analysis to a module, we impose a one minute timeout per module.
Considering the deployment strategy we propose for Synode later in this
section, we believe that an analysis that takes longer would be of little prac-
tical use. We show in the evaluation that the cases in which the timeout
expires are rare and therefore for these cases, Synode alerts the user that a
manual inspection is needed. As described in Section 7.2.2, after finishing
the data flow analysis of a module, the implementation transforms the col-

3 https://developers.google.com/closure/
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lected template trees into templates. Lastly, the analysis writes the set of
templates for each call site into a file to be used by the dynamic analysis.

Runtime analysis: We implement the dynamic analysis in JavaScript. Be-
fore executing the module, the analysis pre-computes the PASTs for each
call site based on the templates gathered by the static analysis. While ex-
ecuting a module, the analysis intercepts all calls to exec and eval and
extracts the strings passed to these function to be checked against our pol-
icy. To parse strings given to exec and eval, we build upon the esprima4

and shell-parse5 modules.

Automatic deployment: As shown by our injections study (Section 4.3),
the practical benefits of a technique to prevent injection attacks depend on
how seamlessly the technique can be deployed. A particular challenge is
how to apply a mitigation technique to code written by third parties that
may not be willing to modify their code. To make the deployment of Syn-
ode as easy as possible without relying on the cooperation of third-party
code providers, we advocate an approach in which a module developer or
a system administrator adds a post-installation script6 to the application
packaged as an npm module.

The script runs on each explicitly declared third-party dependent mod-
ule and, if necessary, performs the code rewriting step that adds dynamic
enforcement at each statically unsafe call site of an injection API. As a re-
sult, our technique to prevent injection attacks can be deployed with very
little effort and without requiring any knowledge about third-party code.

7.5 evaluation

We evaluate our mitigation technique by applying it to all 235,850 Node.js
modules. To avoid analyzing modules without any injection call sites, we
filter modules by searching for call sites of these methods and include
all 15,604 modules with at least one such call site in our evaluation. We
apply our static analysis for each module separately to decide whether
the sink call sites are statically safe or runtime protection is needed for
that module. Since evaluating the runtime mechanism requires inputs that
exercise the modules, we consider a subset of the modules, with known
vulnerabilities, found by others or by us during the study (Section 4.3).

4 http://esprima.org/
5 https://www.npmjs.com/package/shell-parse
6 https://docs.npmjs.com/misc/scripts

148

http://esprima.org/
https://www.npmjs.com/package/shell-parse
https://docs.npmjs.com/misc/scripts


Kind of template tree Call sites

exec eval

Evaluates to constant string without holes 31.05% 39.29%

Holes due to symbolic variables only 49.02% 34.52%

Holes due to unsupported operations 19.93% 26.19%

Figure 7.7: Template trees extracted by the static analysis.

We perform all our measurements on a Lenovo ThinkPad T440s lap-
top with an Intel Core i7 CPU (2.10GHz) and 12 GB of memory, running
Ubunu 14.04.

7.5.1 Static Analysis

Statically safe call sites: The static analysis finds 18,924 of all 51,627 call
sites (36.66%) of injection APIs to be statically safe. That is, the values
that are possibly passed to each of these call sites are statically known,
and an attacker cannot modify them. To further illustrate this point, Fig-
ure 7.7 shows to what extent the analysis can evaluate trees into templates.
For 31.05% and 39.29% of all call sites of exec and eval, respectively, the
template tree contains only constant nodes, operators supported by the
analysis, and alternative nodes, which yield constant strings after evaluat-
ing the tree.

The remaining template trees also contain symbolic variable nodes. Most
of these trees (49.02% and 34.52%) are fully evaluated by the analysis, i.e.,
they contain no unsupported operators. It is important to note that the
static analysis may provide a useful template even if the template tree
contains an unsupported operation. The reason is that the other nodes in
the tree often provide enough context around the unknown part created
by the unsupported operation.

Context encoded in templates: To better understand the templates ex-
tracted by the static analysis, we measure how much context about the
passed string the static analysis extracts. First, we measure for each call site
how many known characters are present per template, on average. The ma-
jority of call sites contain at least 10 known characters and for 10,967 call
sites (21.24%), there is no known character, i.e., our approach relies entirely
on dynamic information. Second, we measure how many unknown parts
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Figure 7.8: Details on static analysis and overhead of runtime checks.

the extracted templates contain. As shown in Figure 7.8a, the templates for
the vast majority of call sites has at most one hole, and very few templates
contain more than five holes.

The main reason for templates with a relatively large number of holes is
that the string passed to injection API is constructed in a loop that appends
unknown values to the final string. The analysis unrolls such loops a finite
number of times, creating a relatively large number of unknown parts.

Third, we measure how many templates the analysis extracts per call
site. Because different executed paths may cause different string values to
be passed at a particular call site of an injection API, the analysis may yield
multiple templates for a single call site. Figure 7.8b shows that for most call
sites, a single template is extracted.

Reasons for imprecision: To better understand the reasons for imprecision
of the static analysis, we measure how frequent particular kinds of nodes
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Advisories
(Sect. 4.2)

gm I 1 2 0 0 0.41

libnotify I 4 2 0 1 0.19

codem-transcode N 1 4 0 0 0.80

printer I 1 4 0 0 0.28

Reported by us
(Sect. 4.3.4)

mixin-pro I 2 4 0 0 0.16

modulify I 1 2 0 1 0.04

mol-proto I 1 2 0 1 0.07

mongoosify I 1 2 0 0 0.04

mobile-icon-resizer FS 1 5 0 0 0.39

m-log I 11 1 0 0 0.05

mongo-parse I 1 2 0 0 0.11

mongoosemask I 1 1 0 0 0.04

mongui N 1 2 0 0 0.05

mongo-edit N 1 1 0 0 0.04

mock2easy N 1 2 0 0 0.03

Case study
(Sect. 4.3.5)

growl I 1 2 0 0 2.72

autolint FS 4 4 0 0 1.59

mqtt-growl N 1 2 0 0 3.19

chook-growl-reporter I 1 1 0 0 1.60

bungle FS 14 4 0 0 1.99

Other exec
(Sect. 4.3.2)

fish I 1 4 0 0 0.21

git2json I 1 4 0 1 0.37

kerb_request I 3 4 0 0 0.25

keepass-dmenu CL 1 4 0 1 0.52

Total 56 65 0 5

Average 0.74

Figure 7.9: Results for runtime enforcement. Used injection vectors: module’s
interface (I), network (N), file system (FS), command line (CL).
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1 var keys = Object.keys(dmenuOpts);
2 var dmenuArgs = keys.map(function (flag) {
3 return ’-’ + flag + ’ "’ + dmenuOpts[flag] + ’"’;
4 }).join(’ ’);
5 var cmd = ’echo | dmenu -p "Password:" ’ + dmenuArgs;
6 exec(cmd);

Figure 7.10: Example of a false positive.

in template trees are. We find that 17.48% of all call sites have a template
tree with at least one node that represent a function parameter. This result
suggests that an inter-procedural static analysis might collect even more
context than our current analysis. To check whether the static analysis may
miss some sanitization-related operations, we measure how many of the
nodes correspond to string operations that are not modelled by the anal-
ysis and to calls of functions whose name contains “escape”, “quote”, or
“sanitize”. We find that these nodes appear at only 3.03% of all call sites.
The low prevalence of such nodes, reiterates the observation we made dur-
ing our study in Chapter 4: An npm module that uses sanitization when
calling an injection API is the exception, rather than the rule.

Analysis running time: Our analysis successfully completes for 96.27% of
the 15,604 modules without hitting the one-minute timeout after which we
stop the analysis of a module. The average analysis time for these modules
is 4.38 seconds, showing the ability of our approach to analyze real-world
code at a very low cost.

We conclude from these results that the static analysis is effective for the
large majority of call sites of injection APIs. Either the analysis successfully
shows a call site to receive only statically known values, or it finds enough
context to yield a meaningful security policy to be checked at runtime. This
finding confirms our design decision to use a scalable, intra-procedural
analysis. The main reason why this approach works well is because most
strings passed to injection APIs are constructed locally and without any
input-dependent path decisions.

7.5.2 Runtime Mechanism

For evaluating the runtime mechanism we consider a set of 24 vulnerable
modules listed in Figure 7.9. The set includes modules reported as vulner-
able on the Node Security Platform, modules with vulnerabilities found
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during our study in Chapter 4, and clients of known vulnerable modules.
We exercise each module both with benign and with malicious inputs that
propagate to the call sites of injection APIs.7 As benign inputs, we derive
example usages from the documentation of a module. As malicious inputs,
we manually craft payloads that accomplish a specific goal. The goal for
eval is to add a particular property to the globally available console
object. For exec, the goal is to create a file in the file system. Figure 7.9
lists the modules and the type of injection vector we use for the malicious
inputs. “(I)nterface” means that we call the module via one of its exported
APIs, “(N)etwork” means that we pass data to the module via a network
request, “(F)ile system” means that the module reads input data from a
file, and “(C)ommand line” means that we pass data as a command line ar-
gument to the module. In total, we use 56 benign inputs and 65 malicious
inputs.

False positives: Across the 56 benign inputs, we observe five false positives,
i.e., a false positive rate of only 8.92%. Three false positives are caused by
limitations of our static analysis. For example, Figure 7.10 contains code
that constructs a command passed to exec by transforming an array keys
of strings using Array.map. Because our static analysis does not model
Array.map, it assumes that the second part of cmd is unknown, leading
to a PAST with a single unknown subtree. Our runtime policy allows fill-
ing this subtree with only a single argument, and therefore rejects benign
values of dmenuArgs that contain two arguments. Further improvements
of our static analysis, e.g., by modeling built-in functions, will reduce this
kind of false positive.

The remaining two false positives are caused by the set of safe node
types in our runtime mechanism. For example, the mol-proto module uses
eval to let a user define arbitrary function bodies, which may include AST
nodes beyond our set of safe node types. Arguably, such code should be
refactored for enhanced security. Alternatively, if a user of a module trust
that module, she can whitelist either specific call site of the injection API
or the entire module.

Overall, we conclude that the approach is effective at preventing injec-
tions while having a false positive rate that is reasonably low, in particular
for a fully-automated technique.

False negatives: Synode prevents all attempted injections during our eval-
uation, i.e., there are not false negatives. In general, however, there are

7 The modules and inputs are available as benchmarks for future research: https://
github.com/sola-da/Synode.
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multiple reasons that might cause false negatives. First, our static analysis
fails to identify highly dynamic sink calls:

global["ev"+"al"](userInput);

Because the code to construct call targets can be arbitrarily complex, no
static analysis can guarantee to detect all sink calls. As Synode targets
code that is vulnerable by accident, and not malicious on purpose, we con-
sider the problem of hidden sink calls to be negligible in practice. Second,
Synode prevents the addition of new commands to the templates, but it
does not defend against data only attacks. For example, sometimes it is
insufficient to ensure that the input is a literal:

exec("rm " + userInput)

Computational cost: Our static analysis identifies a total of 1,560 templates
for the injection APIs in the considered modules. For each of them, we con-
struct a PAST with a median computation time of 2 milliseconds per mod-
ule. We note that for some modules this number is significantly higher due
to our simple PAST construction algorithm and due to the high number of
templates per module.

The last column of Figure 7.9 shows the average runtime overhead per
call of an injection API that is imposed by the runtime mechanism (in mil-
liseconds). We report absolute times because the absolute overhead is more
meaningful than normalizing it by a fairly arbitrary workload. Our enforce-
ment mechanism costs 0.74 milliseconds per call, on average over 100 runs
of the modules using all the inputs. This result demonstrates that the over-
head of enforcement is generally negligible in practice.

To demonstrate the scalability of our runtime enforcement, we consider
input data of different size and complexity and pass it to the injection
APIs. Here, we focus on eval call sites from Figure 7.9 only. As inputs,
we use a diverse sample of 200 JavaScript programs taken from a corpus
of real-world code8. For every call to eval, we pass all 200 JavaScript
programs 100 times each and measure the variance in enforcement times.
Figure 7.8c shows the enforcement time, in milliseconds, depending on the
size of the JavaScript program, measured as the number of AST nodes. For
each input size, the figure shows the 25% percentile, the median value, and
the 75% percentile. We find that the enforcement time scales linearly. The
reason is that all steps of the runtime enforcement, i.e., parsing the input,
matching the AST with the PASTs, and checking whether nodes are on a
whitelist, are of linear complexity.

8 http://learnbigcode.github.io/datasets/
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7.6 conclusions

In this chapter we present Synode, an automated technique for mitigating
injection vulnerabilities in Node.js applications. At the same time, the ap-
proach effectively prevents a range of attacks while causing very few false
positives and while imposing sub-millisecond overheads. To aid with its
adoption, our technique requires virtually no involvement on the part of
the developer. Instead, Synode can be deployed automatically as part of
module installation.
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8
F U L L - S TA C K I N F O R M AT I O N F L O W A N A LY S I S

Information flow analysis is a powerful security program analysis that can
be used to secure third-party JavaScript code and, hence, mitigate some of
the security risks incurred by excessive code reuse (see particularity P2 in
the introduction). This chapter studies the tradeoff caused by considering
different types of implicit flows in an information flow analysis. It is full-
stack in the sense that in our evaluation we consider both client-side and
server-side benchmarks. This chapter shares material with the correspond-
ing publication [Sta+19].

8.1 motivation

While some language features JavaScript, such as dynamism and flexibil-
ity, explain its popularity, the lack of other features, such as language-level
protection and isolation mechanisms, open up a wide range of integrity,
availability, and confidentiality vulnerabilities [Joh08]. As a result, secur-
ing JavaScript applications has become a key challenge for web applica-
tion security. Unfortunately, existing browser-level mechanisms, such as
the same-origin policy or the content security policy, are coarse-grained,
falling short to distinguish between secure and insecure manipulation of
data by scripts. Furthermore, server-side applications lack such isolation
mechanisms completely, allowing an attacker, e.g., to inject and execute
arbitrary code that interacts with the operating system through powerful
APIs as we show in Chapter 4.

An appealing approach to securing JavaScript applications is informa-
tion flow analysis. This approach tracks the flow of information from
sources to sinks in order to enforce application-level security policies. It can
ensure both integrity, by preventing information from untrusted sources to
reach trusted sinks, and confidentiality, by preventing information from se-
cret sources to reach public sinks. For example, information flow analysis
can check that no attacker-controlled data is evaluated as executable code
or that secret user data is not sent to the network. Because the dynamic na-
ture of JavaScript hinders precise static analysis, dynamic information flow
analysis has received significant attention by researchers [AF12; Bau+15;
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1 // variable passwd is sensitive
2 var gotIt = false;
3 var paddedPasswd = "xx" + passwd;
4 var knownPasswd = null;
5 if (paddedPasswd === "xxtopSecret") {
6 gotIt = true;
7 knownPasswd = passwd;
8 }
9 // function sink is insensitive
10 sink(gotIt);

Figure 8.1: Program leaking the password to the network.

Bic+17; CN15; DG+12; Hed+14; RJLS10; Vog+07]. The basic idea of dy-
namic information flow analysis is to attach security labels, e.g., secret
(untrusted) and public (trusted), to runtime values and to propagate these
labels during program execution. To simplify the presentation, we assume
to have two security labels, and we say that a value is sensitive if its label is
secret or untrusted; otherwise, we say that a value is insensitive.

At the language level, a program may propagate information via two
kinds of information flows:1 Explicit flows [DD77] occur whenever sensitive
information is passed by an assignment statement or into a sink. Implicit
flows [DD77] arise via control-flow structures of programs, e.g., condition-
als and loops, when the flow of control depends on a sensitive value. For a
dynamic information flow analysis, implicit flows can be further classified
into flows that happen because a particular branch is executed, so-called
observable implicit flows [BSS17], and flows that happen because a particular
branch is not executed, so called hidden implicit flows [BSS17].

Figure 8.1 illustrates the different kinds of flows with a simple JavaScript-
like program that leaks sensitive information. The program has a variable
passwd, which is marked initially as a sensitive source at line 1. Using
this variable in an operation that creates a new value, e.g., in line 3, is an
explicit flow. Consider the case where the password is “topSecret”, i.e., the
conditional at line 5 evaluates to true, and line 6 sets gotIt to true. At
line 10, the gotIt variable is sent to the network through the function
sink(), which is considered to be an insensitive sink. The flow from the
password to gotIt is an observable implicit flow because a sensitive value
determines that gotIt gets written. Now, consider the case where passwd
is “abc”. The branch at line 5 is not taken and the gotIt variable remains
false. Sending this information to the network reveals that the password
is different from “topSecret”. This flow is a hidden implicit flow because a
sensitive value determines that gotIt does not get written.

1 There are other kinds of flows, such as timing and cache side-channels, which we ignore here.
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Ideally, an information flow analysis should consider all three kinds of
flows. In fact, there exists a large body of work on static, dynamic, hy-
brid, and multi-execution techniques to prevent explicit and implicit flows.
However, so far these tools have seen little use in practice, despite the
strong security guarantees that they provide. In contrast, a lightweight
form of information flow analysis called taint analysis is widely used in
computer security [SAB10]. Taint analysis is a pure data dependency anal-
ysis that only tracks explicit flows, ignoring any control flow dependencies.

The question which kinds of flows to consider is a tradeoff between
costs and benefits. On the cost side, considering more flows increases false
positives [Kin+08]. A false positive here means that a secure execution is
conservatively blocked by an overly restrictive enforcement mechanism. A
common reason is that a value gets labeled as sensitive even though it
does not actually contain information that is security-relevant in practice.
This problem, sometimes referred to as label creep [Den82; SM03], reduces
the permissiveness of information flow monitoring, because the monitor
will prematurely stop a program to prevent a value with an overly sensi-
tive label from reaching a sink. Another cost of considering more kinds of
flows is an increase in runtime overhead. On the benefit side, considering
more flows increases the ability to find security vulnerabilities and data
leakages, i.e., the level of trust one obtains from the analysis. For exam-
ple, an analysis that considers only explicit flows will miss any leakage
of sensitive data that involves an implicit flow. Unfortunately, despite the
large volume of research on information flow analysis, there is very little
empirical evidence on the importance of the different kinds of flows in real
applications. Because of this lack of knowledge, potential users of informa-
tion flow analyses cannot make an informed decision about what kind of
analysis to use.

To better understand the tradeoff between costs and benefits of using
a dynamic information flow analysis, this chapter presents an empirical
study of information flows in real-world JavaScript code. Our overall goal
is to better understand the costs and benefits of dynamically analyzing ex-
plicit, observable implicit, and hidden implicit flows. Specifically, we are
interested in how prevalent different kinds of flows are, what kinds of secu-
rity problems can(not) be detected when considering subsets of flows, and
what costs considering all flows imposes. To address these questions, we
study 56 real-world JavaScript programs in various application domains
with a diverse set of security policies. The study considers integrity prob-
lems, specifically code injection vulnerabilities and denial of service vulner-
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abilities caused by an algorithmic complexity problem, and confidentiality
problems, specifically leakages of uninitialized memory, browser finger-
printing and history sniffing. Each studied program has at least one real-
world security problem that information flow analysis can detect.

Our study is enabled by a novel methodology that combines state-of-
the-art dynamic information flow analysis [AF10; HS12; Hed+14] and pro-
gram rewriting [BHS12] with a set of novel security metrics. We implement
the methodology in a dynamic information flow analysis built on top of
Jalangi [Sen+13]. The implementation draws on a sound analysis for a
simple core of JavaScript. The formalization relates the security metrics to
semantic security conditions for taint tracking [Sch+16], observable track-
ing [BSS17] and information flow monitoring [GM82].

The findings of our study include:

1. All three kinds of flows occur locally in real-life applications, i.e., an
analysis that ignores some of them risks to miss violations of the
information flow policy. Explicit flows are by far the most preva-
lent, and only five benchmarks contain hidden implicit flows (Sec-
tion 8.4.1).

2. An analysis that considers explicit and observable implicit flows, but
ignores hidden implicit flows, detects all vulnerabilities in our bench-
marks. For most applications it is even sufficient to track explicit
flows only, while for some client-side, privacy-related applications
one must also consider observable implicit flows (Section 8.4.2).

3. Tracking hidden implicit flows causes an analysis to prematurely ter-
minate various executions. Furthermore, we find that different moni-
toring strategies proposed in the literature vary significantly in their
permissiveness. (Section 8.4.3).

4. The amount of data labeled as sensitive steadily increases during the
execution of most benchmarks, confirming the label creep problem.
An analysis that considers implicit flows increases the label creep by
over 40% compared to an analysis that considers only explicit flows
(Section 8.4.4).

5. The analysis overhead caused by considering implicit flows is sig-
nificant: Ignoring implicit flows saves the effort of tracking runtime
operations by a factor of 2.5 times (Section 8.4.5).

Prior work (discussed in Section 10.8) studies false positives caused by
static analysis of implicit flows [Kin+08; RSL09] and the semantic strength
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of flows [MP09]. Jang et al. [RJLS10] conduct a large-scale empirical study
showing that several popular web sites use information flows to exfiltrate
data about users’ behavior. Kang et al. [Kan+11] combine dynamic taint
analysis with targeted implicit flow analysis, demonstrating the impor-
tance of tracking implicit flows for trusted programs. However, to the best
of our knowledge, no existing work analyzes the cost-benefit tradeoff of
considering different types of flows in realistic JavaScript programs.

In summary, this chapter contributes the following:

• We are the first to empirically study the prevalence of explicit, observ-
able implicit, and hidden implicit flows in real-world applications
against integrity, availability, and confidentiality policies.

• We present a methodology and its implementation, which enables
the study, and we provide a formal basis for empirically studying
information flows (Section 8.3).

• Through realistic case studies and security policies, we provide em-
pirical evidence that sheds light on the cost-benefit tradeoff of in-
formation analysis and that outlines directions for future work (Sec-
tion 8.4).

We implement our dynamic information flow analysis in a tool called
iFlow which we make available, together with all the benchmarks and
policies used for the study, to support future evaluations of information
flow tools for JavaScript.2

8.2 benchmarks and security policies

Our study is based on 56 client-side and server-side JavaScript applica-
tions, which suffer from four classes of vulnerabilities. These applications
are subject to attacks that have been independently discovered by existing
work, including integrity, availability, and confidentiality attacks. For every
application, we define realistic security policies expressed as information
flow policies. Table 8.1 shows the applications, along with their security
policies, and size measured in lines of code. The benchmarks vary in size
from tens of lines of code to tens of thousands. We further explain the poli-
cies below. For each application we either create or reuse a set of inputs
that trigger the attack and other inputs to increase the coverage of different
behaviors.

2 https://new-iflow.herokuapp.com/download-iflow.html
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Type ID Library Policy LoC SBC Upgs
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1 fish module→ eval and exec 69 1 0

2 growl module→ eval and exec 270 1 0

3 gm module→ eval and exec 1,614 1 0

4 libnotify module→ eval and exec 54 1 0

5 mixin-pro module→ eval and exec 168 1 0

6 modulify module→ eval and exec 2,410 1 0

7 mol-proto module→ eval and exec 1,696 1 0

8 mongoosify module→ eval and exec 160 0 1

9 m-log module→ eval and exec 243 1 0

10 mobile-icon-resizer file system API→ eval and exec 410 1 0

11 mongo-parse module→ eval and exec 506 1 0

12 mongoosemask module→ eval and exec 12,750 0.78 28

13 mongui HTTP API→ eval and exec 1,539 0.44 0

14 mongo-edit HTTP API→ eval and exec 577 0 0

15 mock2easy HTTP API→ eval and exec 1,217 0.07 3

16 chook-growl-reporter module→ eval and exec 243 1 0

17 git2json module→ eval and exec 434 1 0

18 kerb_request module→ eval and exec 67 1 0

19 printer module→ eval and exec 139 1 0

R
eD

oS
vu
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20 debug module→ regex matching 360 1 0

21 mime module→ regex matching 108 1 0

22 tough-cookie module→ regex matching 1,145 1 0

23 fresh module→ regex matching 59 0.5 0

24 forwarded module→ regex matching 30 0 0

25 underscore.string module→ regex matching 1,779 1 0

26 ua-parser-js module→ regex matching 584 0.50 6

27 parsejson module→ regex matching 46 1 0

28 useragent module→ regex matching 6,827 1 0

29 no-case module→ regex matching 33 1 0

30 content-type-parser module→ regex matching 221 1 0

31 timespan module→ regex matching 577 0.20 4

32 string module→ regex matching 2,001 1 0

33 content module→ regex matching 125 0.42 0

34 slug module→ regex matching 375 0.5 2

35 htmlparser module→ regex matching 2,155 0.65 5

36 charset module→ regex matching 49 0.5 0

37 mobile-detect module→ regex matching 612 1 0

38 ismobilejs module→ regex matching 935 0.33 1

39 dns-sync module→ regex matching 76 1 0

Bu
ff

er
vu

ln
s. 40 ip buffer reading→ module 325 0.76 0

41 concat-stream buffer reading→ module 132 1 0

42 bl buffer reading→ module 206 0.72 4

43 request buffer reading→ HTTP 2,217 0.52 0

44 ws buffer reading→ HTTP API 2,449 0.07 1

45 floody buffer reading→ HTTP API 94 0.8 0

46 tunnel-agent buffer reading→ HTTP API 225 1 0

C
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nt
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e
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es

47 History sniffing [RJLS10] HTMLElement.color→ img.src 42 0 3

48 Font fingerpr. [Aca+13] HTMLElement.offsetWidth→ img.src 145 0.5 1

49 Font fingerpr.3 HTMLElement.offsetWidth→ img.src 44 0.02 3

50 Font fingerpr.4 HTMLElement.offsetWidth→ img.src 134 1 0

51 Browser ext. fingerpr. [SAS17] HTMLElement.offsetWidth→ request.open 1,451 1 1

52 DoNotTrack leakage5 navigator_doNotTrack→ HTMLElement.html 20 0 1

53 Login state leakage6 onload event→ document.innerHTML 191 1 0

54 Engine fingerpr.7 HTMLElement.type→ console.log 129 0 1

55 Browser ext. fingerpr.8 onload event→ HTMLElement.innerHTML 37 0 0

56 Resource fingerpr.9 onload event→ console.log 43 0 0

Table 8.1: Insecure programs, security policies, program size, sensitive branch
coverage and number of upgrades. "module" stands for the module
interface.
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Our goal is an in-depth study of the different kinds of information flows
for a range of security policies; we do not claim to study a representa-
tive sample of JavaScript applications. Existing in-breadth empirical stud-
ies, which analyze hundreds of thousands of web pages against fixed poli-
cies, provide clear evidence for security and privacy risks in JavaScript
code [LSJ13; Mel+18; RJLS10]. In contrast to these large-scale studies, our
effort consists in identifying vulnerable scripts from different domains and
analyzing the flows therein.

injection vulnerabilities Injection vulnerabilities are errors that
enable an attacker to inject and execute malicious code. In Chapter 4 we
demonstrate the devastating impact of injection vulnerabilities on server-
side programs, e.g., when an attacker-controlled string reaches powerful
APIs such as exec or eval. Such attacks can severely compromise in-
tegrity, e.g., deleting all files in a directory or completely controlling the
attacked machine. We study 19 Node.js modules that contain injection vul-
nerabilities (IDs 1 to 19 in Table 8.1). As security policies, we consider the
interface of a module as an untrusted source and the APIs that interpret
strings as code, such as exec or eval, as trusted sinks.

redos vulnerabilities Regular expression Denial of Service, or Re-
DoS, is a form of algorithmic complexity attack that exploits the possibly
long time of matching a regular expression against an attacker-crafted in-
put. As discussed in Chapter 5, the single-threaded execution model of
JavaScript makes JavaScript-based web servers particularly susceptible to
ReDoS attacks. We analyze 19 web server applications that are subject to
ReDoS attacks (IDs 20 to 39 in Table 8.1). As a security policy, we consider
data received via module’s interface as untrusted sources and regular ex-
pressions known to be vulnerable as trusted sinks.

buffer vulnerabilities Buffer vulnerabilities expose memory con-
tent filled with previously used data, e.g., cryptographic keys, source code,
or system information. In Node.js, such vulnerabilities occur when using
the Buffer constructor without explicit initialization. Buffer vulnerabili-

3 https://www.privacytool.org/AnonymityChecker/
4 http://www.lalit.org/lab/javascript-css-font-detect/
5 https://browserleaks.com/js/donottrack.js
6 https://robinlinus.github.io/socialmedia-leak/
7 https://www.privacytool.org/AnonymityChecker/
8 https://popmyads.com/
9 https://browserleaks.com/firefox#more
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ties are similar to the infamous Heartbleed flaw in OpenSSL [Dur+14], as
both allow an attacker to read more memory than intended. We analyze 7

applications subject to buffer vulnerabilities (IDs 40 to 46 in Table 8.1). The
security policy requires that no information flows from the buffer alloca-
tion constructor to HTTP requests without initialization.

device fingerprinting and history sniffing Web-based finger-
printing collects device-specific information, e.g., installed fonts or browser
extensions, to identify users [Aca+14]. History sniffing attacks use the fact
that browsers display links differently depending on whether the target
has been visited [RJLS10; Wei+11]. We analyze 10 client-side JavaScript ap-
plications that are subject to various forms of fingerprinting and history
sniffing attacks (IDs 47 to 56 in Table 8.1). The security policies label as se-
cret the sources that provide sensitive information, e.g., the font height and
width, and as public sinks the APIs that enable external communication,
e.g., image tags. We adapt these programs to our Node.js-based infrastruc-
ture by introducing minimal changes that emulate DOM interactions. We
carefully cross-checked this adaptations in a pair-programming fashion,
ensuring that all flows in the original program are preserved. The policies
are application-specific and mark certain nodes in the emulated DOM as
sources and sinks. In contrast to the other benchmarks, these programs can
potentially be malicious [Nik+13; RJLS10]. That is, the assumption that the
analyzed code is trusted does no longer hold.

8.3 methodology

To enable our empirical study, we present a methodology that combines
a set of novel metrics with a dynamic information flow analysis [HS12;
Hed+14], a monitoring strategy [AF10], and an automated mechanism to
insert upgrade statements [BHS12]. The metrics summarize the flows ob-
served during the program execution. This section provides the necessary
background on information flow analysis, an informal description of our
methodology, and definitions of the metrics. It also presents a formaliza-
tion of the core of our methodology.

8.3.1 Setting: Information Flow Analysis

security labels An information flow analysis associates each value
with a security label that indicates how sensitive the value is. Labels are
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Strategy Sec. condition Tracked flows Permissiveness

Expl. Obs. Hid.

Taint
tracking

Explicit secrecy X Stop when H-labeled
value reaches sink.

Observable
tracking

Observable
secrecy

X X Stop when H-labeled
value reaches sink.

No Sensitive
Upgrade

Non-
interference

X X X Stop when L-labeled
variable is written in
sensitive context.

Permissive
Upgrade

Non-
interference

X X X Stop when partially
leaked value is used.

Table 8.2: Monitoring strategies (“Expl.” = explicit, “Obs.” = observable implicit,
“Hid.” = hidden implicit).

typically arranged in a lattice [Den76]. To ease the presentation, we focus
on two labels: H (for high or sensitive) and L (for low or insensitive), where
H is more sensitive than L. Given a label ` ∈ {H, L}, we write v` to denote
that a value v has security label `. If a value v does not have a label, we
assume it is implicitly labeled as L.

information flow policy The analysis checks whether data from
a sensitive source influences data that arrives at an insensitive sink. The
sources and sinks for a program are specified in an information flow policy,
or short, policy. For integrity, the policy specifies that no information from
untrusted sources (H) reaches trusted sinks (L). For confidentiality, the pol-
icy stipulates that no information from secret sources (H) reaches public
sinks (L). We model sources by variables and object fields, and their secu-
rity label corresponds to the label of the value that they contain initially.
We denote sinks by a function sink(), which is implicitly labeled as L.

monitoring strategies Different monitoring strategies for dynamic
information flow analysis address the problem of checking whether an ex-
ecution violates a policy. In this work, we focus on flow-sensitive dynamic
monitors, where variables can be assigned different security labels dur-
ing the execution. Table 8.2 gives an overview of the monitoring strategies
studied in this chapter. Taint analysis tracks only explicit flows and stops
the program only if an H-labeled value reaches a sink.
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In contrast to taint tracking, the other three strategies also track implicit
flows. The monitors identify implicit flows by maintaining a security stack
that contains all sensitive labels of expressions in conditionals that influ-
ence the control flow. When the stack is non-empty, the program executes
in a sensitive context. Observable Tracking [BSS17] tracks only explicit and
observable implicit flows, but ignores hidden implicit flows. Whenever an
L-labeled variable is updated in a sensitive context, observable tracking up-
dates the label as sensitive and continues with the execution. For example,
consider the following program, which is trivially secure because there is
no call to sink():

1 var location; var y; var z;
2 if (10 < location < 20) {
3 y = "Home"; }
4 //upgrade(y);
5 z = "You are at " + y;

Consider now an execution where the location is 15H . Observable track-
ing updates the labels of y and z as sensitive and does not stop the execu-
tion.

The strictest monitoring strategies try to prevent also hidden implicit
flows. We consider two variants of such a strategy. They both terminate the
execution of the program whenever an observable implicit flow may lead
to a hidden implicit flow in another execution. The No Sensitive Upgrade
strategy (NSU) [AF09; Zda02] disallows updating the security labels of a
variable in a sensitive context. In particular, it terminates the execution
whenever such an update happens. For example, consider the execution
of the above program with location=15H . The NSU strategy terminates
the program at line 3 due to the update of the L-labeled variable y in a
sensitive context.

Permissive Upgrade (PU) [AF10] is a refinement of the NSU strategy.
It labels a value as partially leaked if an L-labeled variable is updated in a
sensitive context, and terminates the program if the updated variable is fur-
ther used outside the sensitive context. Consider again the same execution
of the above program. The PU strategy labels y as partially leaked at line 3

because the program writes to the L-labeled variable in a sensitive context,
and then terminates the program at line 5 because the value is used. In our
work, we use the PU strategy to study the prevalence of different kinds of
flows.

upgrade statements Naively applying the PU strategy to real-world
programs can be very restrictive and risks to increase the number of false
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positives, i.e., terminate many secure executions. To address this problem,
Austin and Flanagan propose the upgrade statement [AF09] and the privati-
zation statement [AF10]. These statements change the label of a variable to
H explicitly, to signal a potential hidden implicit flow to the monitor. For
example, we can insert an upgrade statement before line 5 in the above
example to mark y as sensitive even if the branch is not taken. As a result,
the program does not terminate immediately when the value is read. If the
program would later call sink(y), then the monitor would terminate the
program and report a policy violation.

permissiveness The above example illustrates the permissiveness is-
sues of different monitoring strategies, i.e., that they terminate the pro-
gram unnecessarily even though no policy violation occurs. Taint tracking
and observable tracking both do not terminate the program. In contrast,
both NSU and PU terminate the program unnecessarily. This overapproxi-
mation of policy violations is necessary to avoid potential hidden implicit
flows. Adding upgrade statements avoids such premature termination of
the program by assigning an H-label to y, independently of what branch
of the conditional statement is executed. If we uncomment line 4, the ex-
ecution proceeds without terminating the program unnecessarily. That is,
upgrade statements may increase the permissiveness, but impose the cost
of adding upgrade statements.

8.3.2 Security Metrics

Our approach uses program testing to measure the prevalence of differ-
ent kinds of information flows. The basic idea is to test a program with
an information flow monitor that implements the PU strategy, while in-
crementing counters that represent the number of explicit, observable im-
plicit, and hidden implicit flows. These counters then allow us to reason
about the prevalence of the different kinds of flows and about the policy
violations that different monitoring strategies would detect. In contrast to
the PU monitor that terminates the program when it encounters a policy
violation, our monitor continues the execution to measure flows in the re-
mainder of the execution. We refer to Section 8.3.3 for the formal definition
of the monitor.

We consider information flows at two levels of granularity. On the one
hand, we consider flows induced by a single operation in the program (Sec-
tion 8.3.2.1). We call such flows micro flows or simply flows. Studying flows
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at the micro flow level is worthwhile because it provides a detailed under-
standing of the operations that contribute to higher-level flows. In partic-
ular, flows provide a quantitative answer to the permissiveness challenges
faced by state-of-the-art dynamic monitors that implement the NSU or the
PU strategy. On the other hand, we consider transitive flows of informa-
tion between a source and a sink, called source-to-sink flows (Section 8.3.2.3).
Studying flows at this coarse-grained level is worthwhile because source-
to-sink flows are what security analysts are interested in when using an
information flow analysis.

The metrics presented in this section measure the prevalence of flows
quantitatively, and do not attempt to judge the importance of flows. To
ensure that our flows represent relevant problems, our study uses real-
world security problems and policies that capture these issues.

8.3.2.1 Micro Flows

To measure how many explicit, observable implicit, and hidden implicit
flows exist, our monitor increments the counters for these micro flows as
follows.

explicit flows The approach counts an explicit flow for every assign-
ment event where the written value is sensitive but the value that gets
overwritten (if any) is not sensitive. The rationale is to capture program be-
havior where sensitive information flows to a memory location that stores
insensitive information. In contrast, overwriting a sensitive value with an-
other (in)sensitive value does not leak any new information, and therefore
does not count as an explicit flow.

For example, consider this code:

1 var x = 3H; var y = 5H; var z;
2 x = y; // no explicit flow
3 z = x; // explicit flow

observable implicit flows The approach counts an observable im-
plicit flow for every assignment event that happens in a sensitive context
and that overwrites an insensitive value. Similar to explicit flows, the ratio-
nale is to capture program behavior that writes sensitive information to a
memory location that stores insensitive information. The main difference
is that the assignment happens because of a control flow decision made
based on a sensitive context. Note that it is irrelevant whether the writ-
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ten value is sensitive because the fact that a write happens leaks sensitive
information.

For example, consider this code:

1 var x = trueH; var y = 3; var z;
2 if (x)
3 y = 5; // observable implicit flow
4 z = 7; // no flow

hidden implicit flows The approach counts a hidden implicit flow
for every execution of an upgrade statement of a variable containing in-
sensitive information. The rationale is to capture assignment events that
did not happen, but that could have happened during the execution if a
control flow decision that depends on a sensitive value would have been
different.

For example, consider this code:

1 var x = falseH; var y; var z;
2 if (x)
3 y = 5; // not executed, no flow
4 upgrade(y); // hidden implicit flow
5 z = y; // hidden implicit flow

8.3.2.2 Label Creep

As mentioned earlier, a common reason for false positives is label creep.
Since measuring false positives would be subject to a given source-to-sink
policy, we focus on measuring the prevalence of the more general phe-
nomenon of label creep in micro flows. Recall that this concept refers to
the fact that information flow analysis may quickly label a large portion
of all values handled in a program as sensitive. In most of the cases, this
leads to an explosion in false positives that in turn reduces the usefulness
of the analysis. We propose a novel metric called Label Creep Ratio (LCR)
to assess how many variables and object fields in memory are labeled as
sensitive.

LCR =
# sensitive variables/fields ever assigned

# variables/fields ever assigned

For a given monitoring strategy, the Label Creep Ratio is the ratio between
the number of assignments of H-labeled values and the total number of
assignments. Intuitively, measuring the LCR throughout an execution es-
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timates the speed at which the memory locations get assigned sensitive
labels.

8.3.2.3 Source-to-sink Flows

To what degree do different kinds of flows contribute to policy violations?
To address this question, we consider transitive flows from a source of sen-
sitive information to a sink of insensitive information. For instance, none
of the flows in the examples above correspond to a source-to-sink flow,
since no sink statement is present.

Now, consider the code:

1 var x = falseH; var y; var z;
2 if (x)
3 y = 5;
4 upgrade(y); // hidden micro flow
5 z = x; // explicit micro flow
6 sink(y); // source-to-sink flow

The program contains two micro flows and one source-to-sink flow. How-
ever, if the execution is analyzed with taint tracking or observable tracking,
the source-to-sink flow is missed, because it occurs only due to the upgrade
statement.

As another example, consider the following code:

1 var x = trueH; var y; var z;
2 if (x)
3 y = 5; // observable flow
4 z = x; // explicit flow
5 sink(y+z); // source-to-sink flow

The source-to-sink flow will be detected by all three kinds of monitoring
strategies, because the variable z gets labeled H via an explicit micro flow
and then gets passed to the sink.

As illustrated by these two examples, we measure how many source-to-
sink flows different monitoring strategies detect by tracking what micro
flows contribute to a source-to-sink flow. Furthermore, to count the num-
ber of unique source-to-sink flows that a monitor detects, we compute the
set of source code locations involved in each source-to-sink flow. If the
code locations of two source-to-sink flows are the same, we count them
as only one unique flow. This corresponds to the way a human security
analyst would inspect warnings produced by an analysis.
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8.3.2.4 Inference of Upgrade Statements

The approach described so far requires a program that indicates hidden
implicit flows through upgrade statements. To obtain such a program, we
adapt a testing-based technique for automatically inserting upgrade state-
ments [BHS12]. The basic idea is to repeatedly execute the program with
a particular policy, to monitor the execution for potentially missed hidden
implicit flows (using the PU strategy [AF10], see Section 8.3.1), and to in-
sert upgrade statements that signal them to the monitor when counting
micro flows. Whenever the monitor terminates the program because it de-
tects an access to a value u that is marked as partially leaked, the approach
modifies the program by inserting an upgrade statement at the code loca-
tion where u is next used; this upgrade statement in the modified program
will then be executed whenever u is used again, regardless of whether the
same branch that leads to the insertion of the upgrade statement is taken.
The process continues until it reaches a fixed point, i.e., until the program
has enough upgrade statements for the given tests.

The ability of our analysis to observe hidden implicit flows depends
on the completeness of the inferred upgrade statements, since missing up-
grade statements may result in false negatives for hidden implicit flows.
How often this occurs depends on how well the analyzed executions cover
the branches of the programs. One way to assess this ability would be to
measure tradition branch coverage, i.e., the percentage of all branches that
are covered by the given test inputs. However, traditional branch coverage
is only of limited use because inserting upgrade statements does not rely
on covering all branches in the code, but only on a subset. Specifically, the
ability to insert upgrade statements depends on the branch coverage for
conditionals that depend on sensitive values. We present a metric called
Sensitive Branch Coverage (SBC) that captures this idea:

SBC =
|{c ∈ C where both true and false branch covered}|

|C|

where C is the set of conditionals that depend on a sensitive value. For
example, consider executing the following program with x=falseH :

1 var x; var y
2 if (x)
3 y = 5;

The set C consists of the conditional at line 2, but since the execution covers
only the false branch, SBC = 0

1 = 0.
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8.3.3 Formalization of Flows and Conditions

We proceed by defining the syntax and semantics of NanoJS, a simplified
core of JavaScript to illustrate the flow counting performed by our imple-
mentation.

Notation: We denote empty sequences by ε. Concatenating two se-
quences τ1 and τ2 is denoted by τ1.τ2. Slightly abusing notation, we also
use the same notation to prepend a single element α to a sequence τ by
writing α.τ. Similarly, we write α ∈ τ to denote that α occurs in sequence
τ.

NanoJS syntax: NanoJS statements:

Stmt ::= skip | ε | c1; c2 | sink(e) | x = e | x[y] = e |
if (e) { c1 } else { c2 } | while e do c

where x, y ∈ Name, and e ∈ Expr

A terminated execution is denoted by ε. All function calls to sinks with
expression e are modeled by sink(e); other function calls are not consid-
ered in NanoJS.

Semantics: Operationally, the constructs in NanoJS behave as in stan-
dard imperative languages. To count micro flows, we associate each prim-
itive value with a tuple κ : Cnt of flow counts, where Cnt = N3. A tuple
(e, o, h) ∈ Cnt denotes e explicit flows, o observable flows, and h hidden
flows. We write 0 for the tuple (0, 0, 0). A value is either a primitive value
annotated with a flow count, or an address on the heap. We assume that
there is a set Base of primitive base types, such as boolean, numbers, and
strings. A heap object o ∈ Obj maps a finite set of names to values. We
write tt for boolean value true and ff for boolean value false.

We use flow counts to track how information is propagated by a pro-
gram, analogous to labels in other information flow monitors. We define
a join-semilattice structure for flow counts as follows. Intuitively, a non-
zero flow count indicates a sensitive value, whereas if all flow counts are
zero, the value is insensitive: The join of two flow counts is defined as
κ1 t κ2 = κ1 + κ2, where κ1 + κ2 denotes the pointwise addition of the two
flow counts. We write

⊔
t to denote the join operator over a list of flow

counts t.
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Two flow counts satisfy κ1 v κ2 if whenever κ2 = (0, 0, 0) then κ1 = (0,
0, 0).

A configuration 〈c, ρ, h, t, κ〉 consists of a statement c ∈ Stmt, an envi-
ronment ρ : Name → Value mapping variable names to values, a heap
h : Addr→ Obj, a stack of security levels t ∈ L?, and a sink counter κ : Cnt
counting flows reaching sink statements; we denote the set of configura-
tions by Conf . An execution of a NanoJS program yields a trace Tr = Value?

indicating outputs produced by the execution.
We now define the small-step semantics of NanoJS. A step 〈c, ρ, h, t, κ〉 τ−→
〈c′, ρ′, h′, t′, κ′〉 denotes a single evaluation step producing trace τ. We write
ε for a terminated execution. Slightly abusing notation, we define

⊔
(h, v)

as the join of all labels occurring in value v with heap h. For simplicity, we
assume that there are no cyclical references on the heap.

The function upgrade(x, ρ, h) denotes the pair (ρ′, h′), where the hid-
den flow count of all components of the value of a variable x ∈ Name
is incremented by 1. To update flow counts, we use an auxiliary func-
tion ∆ : Cnt× Cnt× Cnt? → (Cnt). Intuitively, ∆(κold, κnew, t) increments
the explicit and observable flow counters for assigning a value with flow
count κnew to a location with label κold while the security stack is t. We

define ∆(κold, κnew, t) = (∆e, ∆o, 0) where ∆e =

1 κnew 6v κold

0 otherwise
and ∆o =1 κold = 0 ∧⊔

t 6= 0

0 otherwise

To define observations based on references passed to sinks, we use a
helper function toVal(h, v) : {Base×Name?} that, given a value, returns all
references to heap objects reachable from the value.

We denote evaluating an expression e in environment ρ and heap h by
JeK(ρ, h). The rules propagate flow counts into the result values; for ex-
ample, adding two values with one explicit flow each will result in two
explicit flows in the result. We assume, contrary to real-world JavaScript,
that expressions do not have side effects.

Finally, Figure 8.2 gives the rules of small-step operational semantics for
NanoJS with flow counting. The way the rules modify the environment
and heap is standard. Some standard rules are omitted and provided in
the appendix of the original publication [Sta+19]. In addition to the stan-
dard execution of a program, the semantics also track flow counts for each
value. For example, an assignment statement x = e propagates the flow
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E-Assign

JxK(ρ, h) = vx κx =
⊔
(h, vx)

JeK(ρ, h) = vκe κ′ = κe + ∆(`x, `e, t) v′ = vκ′ ρ′ = ρ[x 7→ v′]
〈x = e, ρ, h, t, κ〉 −→ 〈ε, ρ′, h, t, κ〉

E-If

JeK(ρ, h) = vκ′ i =

1 v = tt

2 otherwise

〈if (e) { c1 } else { c2 }, ρ, t, κ〉 −→ 〈ci ; pop, ρ, κ′.t, κ〉

E-Sink

JeK(ρ, h) = vκ′′ κa =
⊔
(v, h) κ′ = κ + κa + ∆(0, κa, t)

〈sink(e), ρ, h, t, κ〉 toVal(h,v)−−−−−→ 〈ε, ρ, t, κ′〉

E-UpgradeL
JxK(ρ, h) = v0 v′ = v(0,0,1) (ρ′, h′) = upgrade(x, ρ[x 7→ v′], h)

〈upgrade(x), ρ, h, t, κ〉 −→ 〈ε, ρ′, h′, t, κ〉

Figure 8.2: Rules for NanoJS with flow counting.

counts of the assigned expression e and additionally increments the ex-
plicit flow count if e has non-zero flows and the observable flow count
if the control-flow path is determined by sensitive data. A sink statement
sink(e) increments global counts representing source-to-sink flows. Since
all sink statements model writes to insensitive sinks, any write of an ex-
pression with non-zero flow counts will result in incrementing the global
counters.

Security conditions: We also adapt existing security conditions for
tracking only explicit or observable flows to NanoJS [BSS17]. To capture
only explicit flows, we use the notion of explicit secrecy; intuitively, a run of
a program satisfies explicit secrecy if and only if the program obtained by
sequentially composing all non-control-flow commands executed during
that run does not leak information. For example, the program if (h) { l =
1 } else { l = 2 } ; sink(l) would produce the extracted programs l = 1 ;
sink(l) or l = 2 ; sink(l) depending on the value of h in a given run. In
both cases, the extracted program contains prohibited information flows,
since the source program only leaks information through an implicit flow.

To track only explicit and observable implicit flows, we keep branching
constructs in the extracted program, but replace not taken branches by
skip. If the extracted program does not leak sensitive information, then
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the run satisfies observable secrecy. For example, in the program l = 0 ;
if (h) { l = 1 } else { skip } ; sink(l), observable secrecy would ex-
tract either l = 0 ; if (h) { l = 1 } else { skip } ; sink(l) or l = 0 ;
if (h) { skip } else { skip } ; sink(l). This matches the intuition that an
observable flow only occurs in the run where h is tt, where the assignment
l = 1 is executed, but not in a run where h is ff, since this run only leaks in-
formation through a hidden implicit flow; i.e., the extracted program when
h = tt leaks information, but the extracted program for h = ff does not.

Soundness: To establish soundness of our counting scheme, we show
that if all explicit flow counts for all sinks for a given run are 0, then that
run satisfies explicit secrecy. Similarly, we show that if all explicit and ob-
servable flow counts are 0, the run satisfies observable secrecy. The formal
theorem statements and proofs can be found in appendices of the corre-
sponding publication [Sta+19].

8.3.4 Implementation

To implement our methodology, we develop a tool for dynamic infor-
mation flow analysis following Hedin et al. [HS12; Hed+14]. The imple-
mentation builds on Jalangi [Sen+13], a dynamic analysis framework for
JavaScript that uses source-to-source transformation. Since Jalangi sup-
ports ECMAScript 5 only, we down-compile programs written in newer
versions of the language with Babel [Bab]. Building on top of Jalangi al-
lows us to focus on the important parts of the analysis and let the frame-
work handle otherwise challenging aspects of implementing a dynamic
information flow analysis, e.g., on the fly instrumentation of code pro-
duced by eval, exceptional termination of functions, boxing and unbox-
ing of primitive values [CN15]. We handle higher-order functions and
track dynamic modification of object properties as described by Hedin and
Sabelfeld [HS12]. Our policy language is expressive, allowing the security
analyst to mark both functions and arguments of callbacks as sources.

To approximate the effects of native calls, we model them by transfer-
ring the labels from all parameters to the return value. Moreover, if one
of the parameters is an object, we propagate labels from all its properties
to the return value. For a set of frequently used native functions, such as
Array.push, Object.call, and Object.defineProperty, we create
richer models that propagate labels more precisely. To increase the confi-
dence in our implementation, we created more than 100 validation tests
that assert the correctness of label propagation in typical usage scenarios.
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Figure 8.3: Prevalence of micro flows.
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Figure 8.4: Number of source-to-sink flows detected at different security modes.

When inserting upgrades, the implementation does not modify the actual
source code but it stores the source code locations of upgrades, and then
performs the upgrades at runtime.

8.4 empirical study

This section presents the results of our empirical study that assesses the
costs and benefits of tracking different kinds of flows.

The last two columns of Table 8.1 show the sensitive branch coverage
(SBC) and the number of upgrades inserted while executing the bench-
marks. Overall, the tests used for the study reach a high SBC, for 54% of the
programs even 100%, enabling the analysis to insert upgrade statements.
For each of the considered benchmarks, our tool can detect source-to-sink
flows. This is hardly surprising, since we already know that the programs
contain such flows, but it shows that our tool can handle complex, real-life
JavaScript code.
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8.4.1 Prevalence of Micro Flows

At first, we address the question of how prevalent explicit, observable im-
plicit, and hidden implicit micro flows are among all operations that in-
duce an information flow. Figure 8.3 shows the distribution of micro flows
for our benchmarks. The majority of benchmarks contain both implicit
and explicit micro flows. Benchmark 39 is a special case where reaching
the sink is the first operation performed on the untrusted data, and hence
the data flows directly from source to sink without producing any micro
flow. The explicit flows are by far the most prevalent, appearing in all but
one benchmarks. Five benchmarks also contain hidden implicit flows, but
we can safely conclude that these cases are rare.

8.4.2 Source-to-Sink Flows

We now evaluate source-to-sink flows, which are the ultimate measure of
success for an information flow analysis. Source-to-sink flows are what
a security analysts ultimately cares about: how does information from a
sensitive source reaches an insensitive sink. Information flow analysis has
no way to show that such a flow is security-relevant, but it is the analyst’s
job to further inspect the flows and decide. In this section, however, we
have a different goal and setup: we start with a set of known security
problems that produce a source-to-sink flow and proceed by showing what
type of analysis is needed to detect these problems.

Our tool can enforce different security conditions (cf. Section 8.3.3). For
example, if we are interested only in explicit and observable implicit flows,
we can run the tool in observable tracking mode and enforce observable
secrecy. Figure 8.4 presents the number of source-to-sink flows detected
by different monitoring strategies. All the integrity vulnerabilities can be
detected by taint tracking only, and all the security violations in our data
set can be detected through observable tracking. Moreover, all the Node.js
vulnerabilities can be detected by the taint tracking only, independently
of whether they are confidentiality or integrity vulnerabilities. We argue
that this is because our Node.js programs are expected to be trusted. That
is, a security issue may arise from a programming error, but not by ma-
licious intention. This assumption does not hold, however, for the finger-
printing and history sniffing benchmarks, where only observable implicit
flows contribute to the source-to-sink flows. A second explanation for why
the implicit flows are prevalent in the browser environment is that there are
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Figure 8.5: Number of violations, summarized by code locations, raised by NSU
and PU monitors.

already a set of security mechanisms in the browser that prevent certain
type of dangerous behavior. For example when fingerprinting the login
state using images, an attacker cannot directly read the bytes of the image
due to same origin policy, and hence it relies on measuring its width.

We analyzed in detail the additional source-to-sink flows detected by
observable tracking for benchmarks 12, 26, 34, 43, and 44, and by PU for
benchmark 34. In all these cases the reported flows are false positives, since
they do not allow an attacker to exploit the respective vulnerability. In
Section 8.4.4, we discuss in detail why these false positives occur when
data is propagated through implicit flows.

Our results indicate that observable tracking is enough to tackle all the
real-life security problems we consider and that taint tracking suffices for
all the trusted code. We do not claim that there are no real-life security
problems beyond observable secrecy, we just do not see any in our data
set. Moreover, we believe that when strong controls are in place, attackers
will be motivated to use more sophisticated attacks, possibly though the
use of hidden implicit flows. However, tracking these flows is expensive as
we will see in the remainder of this section.

8.4.3 Permissiveness

A potential problem for adopting information flow analysis in practice is
its limited permissiveness, i.e., the fact that a monitor may terminate the
program even though no data flows from a source to a sink. Our metrics
allow us to quantify this effect both for the NSU and the PU monitoring
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strategies. Specifically, we measure how many code locations a user would
have to inspect because a monitor terminates the program. The NSU mon-
itor terminates the program when an update of an insensitive variable is
performed in a sensitive context. This condition corresponds to observable
implicit micro flows and we count the number of code locations where
such a flow occurs. The PU monitor terminates the program when an in-
sensitive variable that was updated in a sensitive context is read. This ter-
mination condition corresponds to the locations where our tool inserts an
upgrade statement. Figure 8.5 shows the number of code locations affected
by the lack of permissiveness for NSU and PU. We exclude benchmarks
for which neither of the monitoring strategies raises an alarm. On average,
NSU throws 5.46 times more alarms than PU, that is, PU is much more
practical than NSU. However, when comparing the PU violations to the
number of source-to-sink flows that require PU (Figure 8.4), we observe
that most of the PU alarms do not translate to actual source-to-sink flows
and should be considered false positives.

8.4.4 Label Creep Ratio

As a second metric for the cost of different kinds of flows, we use the
Label Creep Ratio (LCR) defined in Section 8.3.2.1. For each benchmark
and monitoring strategy, we measure how the LCR changes during the
execution time. Figure 8.6a shows the ratio for PU monitoring. The met-
ric is not monotonically increasing because the analysis is flow-sensitive,
i.e., the security label of a variable may change over time. Nevertheless,
the LCR steadily increases for most benchmarks, which confirms the label
creep problem. Because our policies are targeted at detecting known secu-
rity problems in the benchmarks, the maximum LCR reached is relatively
low (20%, on average).

A comparison of different monitoring strategies shows that stricter mon-
itoring causes more label creep. On average, observable tracking has a 0.3%
smaller LCR than PU; a taint tracking analysis has a 45.4% smaller LCR
than observable tracking. Figure 8.6b illustrates this effect with a represen-
tative benchmark (number 11). The graph shows how label creep increases
for observable tracking compared to taint tracking.

We illustrate with the same benchmark 11 how label creep may trans-
late to false positives. By revisiting Figure 8.4, we observe that the implicit
flows do not contribute additional source-to-sink violations compared to
a taint analysis. Figure 8.7 shows an excerpt of the source code of the

179



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20
 40

 60
 80

 100

L
a
b
el

 c
re

ep
 r

a
ti
o

Percentage of execution

1
2
3
4
5
6

7
8
9

10
11
13

14
15
16
17
18
19

20
21
22
23
24
25

26
27
28
29
30
31

32
33
34
35
36
37

38
39
40
41
42
43

44
45
46
47
48
49

50
52
53
54
55
56

(a) Each benchmark

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0  20
 40

 60
 80

 100

L
a
b
el

 c
re

ep
 r

a
ti
o

Percentage of execution

Non Interference

Observable Secrecy

Explicit Secrecy

(b) Benchmark 11 at various security modes

Figure 8.6: Label Creep Ratio (LCR) over execution time

1 // query marked ’sensitive’:
2 function parseQuery(query) {
3 // query pushed on the stack:
4 if(query instanceof Function) {
5 var nF = eval(query); // sink call
6 return [new Part(null, ’$’, nF)];
7 }
8 }
9 function Part(f, operator, operand, p){
10 if(p === undefined)
11 p = []; // implicit
12 this.field = f; // implicit
13 this.operator = operator; // implicit
14 }

Figure 8.7: Implicit flows snippet from benchmark 11.
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Explicit Secrecy Observable Secrecy Non Interference

Min Avg Max Min Avg Max Min Avg Max

Command injection 10 59,339 1,118,862 10 59,383 1,118,910 10 59,540 1,118,941

ReDoS vuln. 3 210 2,064 3 540 6,152 3 633 7,073

Buffer vuln. 98 5,740 24,690 98 6,007 24,748 98 6,084 24,843

Client-side progr. 4 5,919 40,364 14 19,555 134,765 16 20,890 136,502

Table 8.3: Number of instrumented operations handling sensitive data for dif-
ferent benchmarks and monitors.

benchmark. The code is vulnerable to code injection, where query is
the source and eval is the sink. The source-to-sink flow is trivial since
the sensitive data is directly passed to the sink at line 3, which a taint
tracker easily detects. In addition, observable tracking pushes the query
on the security stack at line 2, which causes implicit flows at lines 10 and
11 where two constants are written to memory. For detecting code injec-
tions, these flows are irrelevant. For example, suppose we have a state-
ment eval(this.operator) at line 12, for which observable tracking
would report a source-to-sink flow. This source-to-sink flow would be a
false positive because the attacker can only control whether the call to
eval happens, not what value flows into it.

8.4.5 Runtime Overhead

The last cost metric we use is a proxy measure for the runtime overhead
imposed by different monitors. For each benchmark we count the number
of operations that propagate a label or that modify the security stack. Ta-
ble 8.3 shows how the number of events depends on the kind of monitor,
aggregated by the different types of vulnerabilities we consider. As ex-
pected, raising the security bar translates into larger runtime overhead. In-
terestingly, this increase is not uniform across the different types of bench-
marks. For injections, the cost increase is relatively small, while for ReDoS
and client-side programs the increase between explicit and observable se-
crecy is more than 2.5-fold. We hypothesize that this is due to the structure
of the programs: when comparing these findings with the micro flows in
Figure 8.3, we see that implicit flows are more common in ReDoS and
client-side programs than in injections. The price paid to track implicit
flows in the client-side benchmarks translates to detected source-to-sink
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flows, as we have seen in Section 8.4.2, while this is not the case for ReDoS
vulnerabilities.

8.4.6 Threats to Validity

The validity of the conclusions drawn from our study is subject to several
threats. First, our dynamic information flow analysis uses a simple model
for native functions (Section 8.3.4), which may not accurately capture all
effects of these functions. To minimize the influence of this limitation, we
focus the study on subject programs that have relatively few native calls.
We also wrote a set of precise models for some of the array and string
native functions. Second, our results are limited to the programs we con-
sider and may not generalize to other programs or classes of programs. In
particular, we mostly consider non-malicious programs, where difficult-to-
analyze flows may be less prevalent than in malicious code. Our method-
ology is generic enough to be easily applied to other programs. Finally,
the hidden implicit flows that our methodology can observe are bounded
by the upgrade statements inserted into the programs, which in turn de-
pend on the tests we use to exercise the programs. To mitigate this threat
we constructed tests in a way that increases the sensitive branch coverage.
However, multiple paths cannot be covered due to a variety of reasons, e.g.,
error cases that cannot be easily triggered or unfeasible execution paths.
Despite these limitations, our study produces interesting insights about
the kinds of flows that appear in real-world JavaScript programs and the
cost-benefit tradeoff of information flow analysis.

8.5 conclusions

This chapter presents an empirical study of information flows in real-world
programs. Based on novel metrics to capture the prevalence of explicit, ob-
servable implicit, and hidden implicit flows, as well as the costs they in-
volve, we study 56 JavaScript programs that suffer from real-world security
problems. Our results show that implicit flows are expensive to track in
terms of permissiveness, label creep, and runtime overhead. We find taint
tracking to be sufficient for most of the studied security problems, while
for some privacy scenarios observable tracking is needed. Our work helps
researchers, security analysts and analysis developers to better understand
the cost-benefits tradeoffs of information flow analysis.
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9
E X T R A C T I N G S P E C I F I C AT I O N S F O R J AVA S C R I P T
L I B R A R I E S

In this chapter we present an automated technique for extracting taint spec-
ifications of JavaScript libraries. These specifications addresses the exces-
sive code reuse problem (see particularity P2 in the introduction) by better
transmitting security assumptions from the library creator to its consumer,
i.e., developers of client-side code reading the library documentation, or
by enhancing the performance of existing static analysis tools. This chap-
ter shares material with the corresponding publication [Sta+20].

9.1 motivation

An important characteristic of modern JavaScript-based applications is the
extensive use of third-party libraries, as discussed in Chapter 2. On the
npm platform more than 1 million packages (mostly libraries) are avail-
able,1 and only a few of them have been screened intensively for secu-
rity vulnerabilities. A challenge when analyzing the security of npm pack-
ages is that they are often not self-contained, but they in turn depend on
other npm packages for providing lower-level functionality. In Chapter 2

we show that, on average, every npm package depends on 79 other pack-
ages and on code published by 39 maintainers. To correctly understand
an application that uses npm packages, one needs to consider all these
dependencies.

Two main directions are being pursued for automatically securing npm
packages. First, there are tools that aggregate known security vulnerabili-
ties in specific versions of individual libraries and report them to the devel-
oper directly. For example, npm audit analyzes all the dependencies of
a Node.js application and warns the developer about any known vulner-
ability in the dependent-upon code. GitHub, Snyk, and other companies
offer similar services, and related work [Lau+17] advertises such security
controls. The main limitation of this approach is the high number of false
positives. Often the critical part of the library is not used by the application,
or it is used in a way that is completely harmless. For example, an applica-

1 http://www.modulecounts.com/
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tion may use an npm module vulnerable to command injection attacks, but
it only provides string constants provided by the developer as input to this
module. We believe it is important to make the distinction between merely
relying on a library that contains a potential known vulnerability and us-
ing that library in an insecure way. Another problem with these tools is
that libraries that use insecure features of the JavaScript language or of the
Node.js framework are often not registered as having “known vulnerabil-
ities” if their documentation indicates that these features are being used
internally. An example of such a library is the package jsonfile that
provides functionality for easily accessing JSON files. Even though such
a library is not considered vulnerable by itself, it may be used in an inse-
cure manner, e.g., by propagating attacker-controlled data into file system
paths.

A more precise approach for security of JavaScript applications pursued
both by academia and by industry practitioners is static program analysis.
In taint analysis, which is a kind of program analysis that can in princi-
ple detect most common forms of security issues, security properties are
expressed as direct information flows from sources to sinks: either from un-
trusted sources to sensitive sinks (integrity) or conversely from sensitive
sources to untrusted sinks (confidentiality). We focus on integrity because
it covers the vast majority of security vulnerabilities reported by the com-
munity,2 and we ignore indirect flows, also called implicit flows, because
we show in Chapter 8 that they appear seldom in real-world npm vulner-
abilities.

Modularity is the key to scalable static analysis. For example, the LGTM3

analyzer by Semmle, a state-of-the-art taint analysis for JavaScript (and
other languages), achieves high scalability by analyzing modularly. When
analyzing one module of an application, other modules are either ignored
or treated according to manually written specifications that describe es-
sential taint flows where available. Ignoring modules leads to inaccurate
analysis results, while manually constructing specifications is a demand-
ing and error-prone task, so only a limited number of npm modules are
considered. An important question hence is how to obtain specifications of
modules in an automated way.

Inspired by Modelgen for Android [CAA15], we present a technique
that dynamically infers explicit taint flow summaries for npm modules,
to be utilized in a static analysis, such as LGTM. Besides being designed

2 https://www.npmjs.com/advisories
3 https://lgtm.com/
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for JavaScript, our technique is more general than Modelgen, allowing for
complex summaries to be extracted. For example, we are the first to sup-
port summaries involving callback arguments and instantiated exported
classes. Moreover, our technique considers the large amount of transitive
dependencies in npm and thus allows the extraction of summaries for mul-
tiple npm packages in the same execution.

Another source of inspiration is the NoRegrets tool [MMT18] that lever-
ages the vast number of open source packages available in the npm repos-
itory to obtain information about how the most important libraries are
being used. Many of those packages have test suites, and by running the
test suite of a package we can gain information about the taint flows in all
the packages it depends on, both directly and transitively.

A central technical challenge for adapting the Modelgen idea to our set-
ting is that JavaScript is a highly dynamic language, which makes it non-
trivial to map observations from dynamic analysis to taint specifications
that fit into a static analysis. To this end, we adopt the notion of dynamic
access paths from NoRegrets, allowing us to identify entry and exit points
of taint flow in the libraries. Our dynamic analysis uses a variant of mem-
branes [CM10; GMP14; KT15; Mil06] for tracking the taint flow between
libraries and clients. It identifies flows between entry and exit points (prop-
agations), between entry points and existing sinks (additional sinks) and
between existing sources and exit points (additional sources). Finally, we
propose deploying one membrane per npm module and hence extracting
summaries for multiple modules at once.

We show that our approach is highly scalable by successfully running
our dynamic analysis on 15,892 clients of 751 packages. The dynamic anal-
ysis is efficient, spending, on average, only 112 seconds per successfully
analyzed client or 302 seconds per inferred specification. In total, it ex-
tracts 146 additional taint sinks and 7,840 propagation summaries span-
ning 1,393 modules. 35% of the summaries contain complex taint flows,
such as between an argument of an exported method and a parameter
passed by the library to a callback. The evaluation also shows that the
extracted summaries can improve static analyses by enabling it to reveal
otherwise missed vulnerabilities: 136 new alerts are produced, many of
which correspond to likely vulnerabilities.

In summary, our contributions are:

• We present a novel, highly-scalable specification extraction technique
for JavaScript libraries that builds on a dynamic taint analysis and
leverages existing test suites.
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1 let userInput = {
2 tempDir: "./path/to/dir",
3 cacheDir: "./path/to/cache"
4 }
5 const _ = require("lodash");
6 const rimraf = require("rimraf")
7
8 let obj = _.forIn(userInput, function(value) {
9 rimraf(value, function(err) {
10 if (err)
11 console.log(err)
12 })
13 })

Figure 9.1: A typical example of JavaScript code that uses npm modules. With
dotted/blue we mark exit points from the client code and with
solid/orange the entry points.

• We report our results from an extensive experimental evaluation of the
approach. The results show that the dynamic analysis is able to infer
non-trivial and accurate taint flow models in widely used Node.js
modules.

• We demonstrate that the inferred taint specifications can be integrated
into an existing static analysis tool, thereby enabling discovery of pre-
viously unknown security vulnerabilities.

Let us consider the example in Figure 9.1. This code fragment uses two of
the most popular npm modules: lodash, a general-purpose utility library,
and rimraf, a simple library for recursively deleting directories on the
disk. In the presented example, the forIn method from lodash is used
to iterate through the values of each property on the user input object.
Each of these values are then passed to the rimraf module.

A human or an automated tool that aims at analyzing the code frag-
ment in Figure 9.1 must first understand the essential semantics of the two
modules. For example, one needs to understand that if some user input is
passed to rimraf without sanitization, then it exposes a directory traver-
sal vulnerability. However, this style of code can hinder understandability,
both for unexperienced users and for static analysis tools. Specifically, it
may not be clear that by invoking the forIn method with two parameters
– an object to be traversed and a callback function – the second parameter
will be invoked with the property values of the first parameter as argu-
ments.

One way to address this problem is to analyze the library code together
with the client code using a whole-program dataflow analyzer. However,
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that approach suffers from serious scalability issues. For example, the im-
plementation of the apparently trivial forIn method spans across 32 files.
In Figure 9.2 we show a subset of the code that needs to be analyzed. Stat-
ically analyzing such a large amount of highly dynamic code is extremely
expensive and tends to give prohibitively imprecise results [AM14].

When trying to analyze the source code of the rimraf module, one is
faced with even greater challenges, as illustrated by Figure 9.3. To reveal
the directory traversal problem discussed earlier, one needs to show that
there is an unsanitized flow from the first parameter of the rimraf func-
tion to one of the file system access methods, e.g., fs.rmdir. However, as
shown by the example, the call to this method is dispatched using dynam-
ically attached methods on the options object. Once again, to the best of
our knowledge, existing static analysis tools for JavaScript are unable to
successfully analyze such highly-dynamic code at scale and with adequate
precision to be practically useful.

Modular analysis, as exemplified by the LGTM analyzer by Semmle, ad-
dresses this challenge by analyzing each package in isolation. If a package
depends on other packages, those are either ignored or modeled using
manually-written specifications that capture the essential dataflows. Rely-
ing on simple generic specifications, e.g., saying that whenever a parame-
ter is tainted then so is the return value, would be too imprecise for this
example and lead to the static analysis missing important flows. Since cre-
ating useful specifications manually is difficult and not scalable, efficient
automated alternatives are needed.

Our approach leverages the information in the npm repository about
packages and their dependencies, together with the package source code
available on GitHub. For this specific example, both lodash and rimraf
have numerous open-source clients, many with test suites. By dynamically
analyzing the executions of those test suites, we can automatically learn
useful specifications.

9.2 taint specifications for modules

The specifications we are interested in summarize the taint-relevant infor-
mation for entry and exit points of JavaScript libraries. For example, one
can specify that the information from entry point A may flow into exit
point B or that values passed to an entry point eventually reach a poten-
tially dangerous operation.
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1 /* In the file forIn.js */
2 var baseFor = require(’./_baseFor’),
3 castFunction = require(’./_castFunction’),
4 keysIn = require(’./keysIn’);
5 function forIn(object, iteratee) {
6 return object == null
7 ? object
8 : baseFor(object, castFunction(iteratee), keysIn);
9 }
10 module.exports = forIn;
11 /* In the file _baseFor.js */
12 var createBaseFor = require(’./_createBaseFor’);
13 var baseFor = createBaseFor();
14 module.exports = baseFor;
15 /* In the file _createBaseFor.js */
16 function createBaseFor(fromRight) {
17 return function(object, iteratee, keysFunc) {
18 var index = -1,
19 iterable = Object(object),
20 props = keysFunc(object),
21 length = props.length;
22
23 while (length--) {
24 var key = props[fromRight ? length : ++index];
25 if (iteratee(iterable[key], key, iterable) === false) {
26 break;
27 }
28 }
29 return object;
30 };
31 }
32 module.exports = createBaseFor;
33 /* ... skipped the other transitive dependencies ... */

Figure 9.2: The implementation of lodash’s forIn method. For space reasons,
only two of the 31 dependent files are shown.

1 var fs = require("fs")
2 function defaults (options) {
3 var methods = [
4 ’unlink’, ’chmod’, ’stat’, ’lstat’, ’rmdir’, ’readdir’
5 ]
6 methods.forEach(function(m) {
7 options[m] = options[m] || fs[m]
8 m = m + ’Sync’
9 options[m] = options[m] || fs[m]
10 })
11 }
12 function rmdir (p, options, originalEr, cb) {
13 defaults(options)
14 options.rmdir(p, function (er) {
15 cb(er)
16 });
17 }
18 module.exports = function rimraf(p, options, cb) {
19 options.lstat(p, function (er, st) {
20 return rmdir(p, options, er, cb)
21 });
22 }

Figure 9.3: Simplified source code for the rimraf module.
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The careful reader may have observed that there is a duality between
the exit points of the client code, e.g., in Figure 9.1, and the entry points of
the library, e.g., in Figure 9.2. For example, the userInput argument in
line 8 corresponds to the object parameter in line 5. We will refer to both
an entry point and its corresponding exit point by using the term contact
point. We also introduce an access path mechanism to uniquely identify
each contact point.

The specifications described in the remainder of this section can in prin-
ciple be produced in multiple ways: either manually or by using a static
or dynamic analysis. Section 9.3 presents an automatic inference process
based on dynamic analysis.

9.2.1 Specifying Contact Points

Inspired by previous work to detect breaking changes in npm package up-
dates [MMT18; MT19], we propose using an access path mechanism for
specifying contact points. An access path, or short ap, can be described as
an S-expression, which is read from the innermost expression outwards.
Each type of symbol corresponds to an operation in the JavaScript lan-
guage.

ap ::= (root <uri>)
| (member <name> <ap>)
| (parameter <i> <ap>)
| (return <ap>)
| (instance <ap>)

The innermost subexpression of a path always contains a root symbol,
which holds an URI that refers to the module. For space reasons, we use
package names instead of package URIs. For example, (root dotenv)
refers to the module that is loaded when calling require(’dotenv’). The
other symbols are member to refer to properties of objects, parameter
that refers to the i’th parameter of a function, return that refers to the re-
turn value of a call, and instance that refers to constructed values. For ex-
ample, the path (parameter 0 (member forIn (root lodash)))
represents both the exit point in line 8 of Figure 9.1 and the first entry
point in line 5 of Figure 9.2. In the remainder of this section we show how
access paths can express different kinds of taint specifications.

We assume that a collection of so-called known sources and sinks is pro-
vided. For example, values obtained from network communication via the

189



Node.js standard library are commonly treated as sources, and arguments
to exec and eval are usually sinks.

We are interested in three types of specifications: additional sinks when
we observe a flow from an entry point to a known sink, additional sources
when there is flow from a known source to an exit point, and propagation
summaries when there is a flow from an entry point to an exit point. We
will now proceed to describe each of them in detail.

9.2.2 Propagation Summaries

The propagation summaries, or propagations for short, specify how taint
may flow in and out of a library’s functions. For example, a propagation
summary can specify that if a tainted value enters the library as a specific
argument to a function, then specific exit points of the library, e.g., prop-
erties on the return value, should also be considered tainted. Having such
information available allows program analyses to reason about the poten-
tial taint flows without needing to reanalyze the source code of the library
for every client.

The most simple form of flow is from an argument of a function to its
return value, either because the argument is returned directly, or because
the argument is used in the computation of the return value. Other more
complicated forms of flow may also occur. For example, if an argument is
written to some internal state of the library, and this state is then returned
from another function, then we have a taint flow from the argument of
one function to the return value of another function, which can also be
captured as a propagation summary.

A propagation summary consists of two access paths: one that represents
the point in the library API where the tainted value enters, and one that
represents the point where the tainted value exits. Consider Example 1

where a function f has a parameter x and returns an object that has a
property p with a value obtained from the p property of x.

Example 1
1 //module m
2 function f(x) {
3 return { p : x.a };
4 }
5 module.exports.f = f;

Taint Specification
(member a (parameter 0 (member f (root m))))y

(member p (return (member f (root m)))
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The interesting taint flow for this code is modeled by the taint specification
shown next to the example, which indicates that taint flows from x.a to the
p property of f’s return value.

This way of expressing taint flows is sometimes inconvenient. For exam-
ple, a common JavaScript pattern is to iterate through all the properties
of an object, which means that the accessed property names differ from
client to client. An example of this reflective pattern is seen in Example 2.
With the current notion of propagation summaries, we can only express
flows involving specific properties, but in this case the relevant property
names depend on the clients. For this purpose we introduce a wildcard
notation for referring to every property of an object: (member * <ap>).
For example, one may refer to all the properties of the obj parameter in
the program example with (member * (parameter 0 (root sum))
as shown in the taint specification of Example 2.

Example 2
1 //module sum
2 function f(obj) {
3 let sum = 0;
4 for (prop in obj) {
5 sum += obj[prop

];
6 }
7 return sum;
8 }
9 module.exports.f = f;

Taint Specification
(member * (parameter 0 (member f (root sum))))

y
(return (member f (root sum))

As mentioned earlier, callbacks are common contact points in npm mod-
ules. Our specifications refer to callbacks by treating a parameter as a func-
tion. The following specification summarizes the part of the lodash li-
brary presented in Figure 9.2, using a callback parameter exit point:

(member * (parameter 0 (member forIn (root lodash))))y
(parameter 0 (parameter 1 (member forIn (root lodash))))

This propagation says that the value of every property of the object passed
as the first argument of the forIn function may flow into the first param-
eter of the callback passed as the second argument.

A final propagation pattern worth discussing is one that involves con-
tact points with return values. In Example 3, the padder module exports
a single anonymous function in line 2. However, this function in turn cre-
ates an object with a lpad property pointing to an internal anonymous
function. This case corresponds to the factory method design pattern from
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object-oriented literature. After invoking the main exported method of the
module, a client obtains a reference to the internal object declared in line 3,
which in turn allows her to invoke the internal anonymous function from
line 4. Thus, there are two exit points of the padder library in the pre-
sented example: one that returns an object with an lpad method, in line 7,
and one corresponding to that method itself, in line 5. The latter depends
on the former, because an object with the lpad method is only exposed to
the client through the first exit point, which in turn creates more entry and
exit points for the lpad method.

Example 3
1 //module padder
2 module.exports = function() {
3 let res = {};
4 res.lpad = function(s) {
5 return " " + s;
6 }
7 return res;
8 }

Taint Specification
(parameter 0 (member lpad (return

(root padder))))y
(return (member lpad (return (root

padder))))

9.2.3 Additional Sinks and Sources

If a value passed into a library reaches a known sink, we say that the entry
point through which the value entered is an additional sink. Intuitively,
passing the value to that contact point or to the sink itself has the same
security implications for the client of the library, hence a program analysis
can treat them the same way.

Revisiting the source code of the rimraf library in Figure 9.3, we can
observe that the value passed as first argument to the main library function
ends up in fs.rmdir(), which is a known sink for directory traversal
vulnerabilities. This method allows recursively removing any folder on
the disk, hence if an attacker can control the value passed into it, she can
cause serious harm on the system. Therefore, it makes sense to specify the
contact point (parameter 0 (root rimraf)) as an additional sink.

Conversely, if inside the library a tainted value is created which then
escapes into the client code through an exit point, we say that the exit
point is an additional source. Example 4 shows a simple module that per-
forms a TCP request and invokes a callback whenever data is received from
the target server. This data should be considered tainted since it comes
from untrusted third-party computers, so it is reasonable to specify the
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contact point (parameter 0 (parameter 2 (root my-tcp)) as an
additional source.

Example 4
1 //module my-tcp
2 module.exports = function (host, port, cb) {
3 const net = require(’net’);
4 const client = new net.Socket();
5 client.connect(port, host, function() {});
6 client.on(’data’, function(data) {
7 cb(data);
8 });
9 }

Even though our dynamic analysis presented in Section 9.3 can in theory
extract all the three types of specification presented so far, our prototype
implementation introduced in Section 9.5 only supports the extraction of
propagations and additional sinks. The main reason for omitting extraction
of additional sources is that existing security vulnerability reports for npm
packages often involve additional sinks, for example CVE-2017-1000219 or
CVE-2018-3772, but vulnerabilities caused by additional sources are less
common.

9.3 inferring taint specifications via dynamic analysis

We now present a technique for dynamically inferring taint specifications,
i.e., propagation summaries and additional sinks, of the form described
in Section 9.2. The goal is to find relations between entry points and
exit points, between entry points and existing sinks, and between existing
sources and exit points.

Figure 9.4 illustrates how our technique works for a single npm module.
The arrows represent information flow, possibly spanning multiple meth-
ods and modules. When the test suites are executed, values are intercepted
at entry points and tainted with a unique identifier per entry point. The
taint inside the module is then propagated using a dynamic taint analysis.
Whenever a tainted value reaches a sink or an exit point, an additional
sink or a propagation summary, respectively, is generated. Similarly, if a
value that is tainted by an internal source is observed at an exit point, an
additional source is generated for that exit point. All taints are removed at
exit points, so we only infer specifications for the library code and not for
the client code.
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source
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Npm moduleClient

Figure 9.4: Inferring specifications for a single library: we taint the entry points
and the sources and check taint at sinks and at exit points. The ar-
rows show information flows and the shaded gray area represents
the membrane.

Previous work [CAA15] considers arguments of methods in the public
API as entry points and return values as exit points, but as the motivating
example shows, this is insufficient for many npm modules. JavaScript li-
braries interact with their clients in complex ways, e.g., through callbacks
like the ones in Figure 9.1 or by allowing plugins to be configured inside
the library. Therefore, it is non-trivial to determine where the library code
starts and where the client code ends. One way to refer to this point of
contact between components and thus to generalize the idea of entry and
exit points is by using the concept of membranes [CM10; Mil06].

9.3.1 Membrane-Based Analysis

The main idea of a membrane is to interpose on every interaction between
the client and the library. Moreover, every reference that passes through the
membrane becomes part of it. Existing work describes how to implement
membranes and how to use them for implementing generic policies such
as “the library should never use the native module fs”. However, to be
useful in our setting, we need a way to distinguish between entry and
exit points of the library and to uniquely refer to every such point in the
membrane.

To rigorously define membranes, we first introduce a way of intercept-
ing operations on a given value. To this end, we rely on proxies, a concept
introduced in ECMAScript 6. A proxy P(v) for a value v is a wrapper ob-
ject that attaches traps to the wrapped value. Every operation applied to
the proxy results in an invocation on the corresponding trap. For exam-
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ple, property reads, property writes, standard operations, and constructor
applications all result in their corresponding traps firing. The traps can
modify the behavior of the operation or just perform observing operations
such as logging.

A proxy can therefore observe operations applied to the wrapped value,
and even decide to modify these operations. Our analysis uses proxies to
perform taint-relevant operations before and after the proxied operation is
executed. We also need a way to associate a unique address, i.e., an access
path, to each proxy and to specify whether the proxy corresponds to an
exit or an entry point:

Definition 1 A contact point, denoted 〈v, ap, d〉, is a tuple consisting of a proxy
P(v) around a value v, an access path ap that uniquely identifies the contact point,
and a direction bit d that specifies whether the contact point is an entry or an exit
point.

For simplicity, we abuse the notation for a contact point 〈v, ap, d〉 by us-
ing 〈v〉 whenever the access path and the direction are not relevant for the
description. One can specify entry and exit points for a library by intro-
ducing proxies around exported API methods in the library source code.
The challenge lies in automatically identifying all the values that need to
be proxied for intercepting all the interactions between two npm modules.
Membranes provide an elegant solution to this problem:

Definition 2 A membrane M is a set of contact points interposed between a
library ` and its clients.M is initialized with {〈v`,(root `), ENTRY〉}, i.e., the
contact point that wraps the main value v` exported by the library. For every value
v that is passed into or returned by an existing contact point inM, a new contact
point 〈v, apv, d′〉 is added to the membrane, i.e.,M :=M∪{〈v, apv, d′〉}.

The new access point apv is derived from the existing ap by picking the
grammar rule from Section 9.2.1 that corresponds to the JavaScript opera-
tion v passed through at the exit point, e.g., a property access or a param-
eter to a function call. Similarly, the direction of the new contact point d′

is derived from the direction of the original contact point d by using the
following intuition: the direction changes for all the values that are passed
as arguments to a method in the membrane. Let us consider a function
object that is passed into an entry point of a library as an argument. Once
it reaches the other side of the membrane, i.e., in the library code, it should
be considered as an exit point for the library. In Table 9.1 we summarize
all the possible operations on a contact point and the way to derive the

195



O
peration

Existing
contact

point
N

ew
contact

point(s)
Pre

action
Post

action

A
ccess

path
D

irection
A

ccess
path

D
irection

r
e
q
u
i
r
e
(
"
f
o
o
"
)
;

-
-

a
p

=
(
r
o
o
t

f
o
o
)

EN
TR

Y
-

-

x
.
p
r
o
p

ap
x

EN
T

R
Y

a
p

=
(
m
e
m
b
e
r

p
r
o
p

ap
x )

EN
TR

Y
-

-

ap
x

EX
IT

a
p

=
(
m
e
m
b
e
r

p
r
o
p

ap
x )

EX
IT

-
taint(x.prop,ap)

r
e
s

=
x
(
a
r
g
)

ap
x

EN
T

R
Y

ap
par =

(
p
a
r
a
m
e
t
e
r

<
i
>

ap
x )

EX
IT

taint(arg,ap
par )

checkTaint(res,ap
x )

ap
ret =

(
r
e
t
u
r
n

ap
x )

EN
TR

Y
untaint(res,ap

x )

ap
x

EX
IT

ap
par =

(
p
a
r
a
m
e
t
e
r

<
i
>

ap
x )

EN
TR

Y
checkTaint(arg,ap

x )
taint(res,ap

ret )

ap
ret =

(
r
e
t
u
r
n

ap
x )

EX
IT

untaint(arg,ap
x )

r
e
s

=
n
e
w

x
(
a
r
g
)

ap
x

EN
T

R
Y

ap
par =

(
p
a
r
a
m
e
t
e
r

<
i
>

ap
x )

EX
IT

taint(arg,ap
par )

checkTaint(res,ap
x )

ap
ret =

(
i
n
s
t
a
n
c
e

ap
x )

EN
TR

Y
untaint(res,ap

x )

ap
x

EX
IT

ap
par =

(
p
a
r
a
m
e
t
e
r

<
i
>

ap
x )

EN
TR

Y
checkTaint(arg,ap

x )
taint(res,ap

ret )

ap
ret =

(
i
n
s
t
a
n
c
e

ap
x )

EX
IT

untaint(arg,ap
x )

T
a

b
l

e
9.

1:C
reation

ofcontactpoints
inside

the
m

em
brane

and
the

corresponding
taintoperations

executed
before

and
after

the
proxied

operation.The
direction

indicates
w

hether
the

proxy
corresponds

to
an

entry
or

an
exit

point.The
taint(v,ap)

action
associates

a
taint

corresponding
to

the
access

path
ap

to
runtim

e
value

v.The
checkTaint(v,ap)

action
recursively

searches
for

tainted
values

in
v,w

here
the

taint
has

the
sam

e
root

package
as

the
access

path
ap.Finally,untaint(v,ap)

recursively
declassifies

all
the

values
in

v
that

have
a

taint
w

ith
the

sam
e

root
as

the
access

path
ap.

196



_ _.forIn

obj

userInput

function(...

first

second

third

(root lodash) (member forIn �)
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Figure 9.5: Contact points in the membrane between lodash and the client code
in Figure 9.1.

access paths and direction bits for the new contact points. We also show
the auxiliary operations necessary for tracking tainted values in the pre
and post action columns. Note that both arguments and return values can
be entry or exit points, depending on the direction bit.

To illustrate how contact points are created, consider the membrane be-
tween lodash and its client in Figure 9.1. The first contact point of the
membrane is created when the library is required in line 5, i.e., M :=
{〈_〉}. When the forIn property is accessed in line 8 a new contact point
is added to the membrane, M :=M∪ {〈_.forIn〉}. When the accessed
property is invoked in the same line, three contact points are created, i.e.,
M := M∪ {〈userInput〉, 〈function . . . 〉, 〈obj〉}. Finally, when the
callback is invoked, three more contact points are created, one for each
parameter. The access paths for each of these contact points are shown in
Figure 9.5; they correspond to a derivation tree of the grammar in Sec-
tion 9.2.1. To obtain the access path of a given contact point, one should
traverse the tree from the root and replace all the � symbols with the access
path of the parent node. For example, the access path of 〈first〉 is:

(parameter 0 (parameter 1 (member forIn (root lodash))))

The dynamic taint analysis we use for propagating taint inside analyzed
modules is fairly standard, with few idiosyncrasies. As noted earlier, we
implement the taint-relevant operations described in the last column of
Table 9.1 inside each module’s membrane. These operations are in fact ad-
ditional sources and sinks from the taint analysis’ perspective since they
either attach taint or check/remove taint. Once a property p is accessed
on a value having a taint t, instead of directly propagating the taint, we
create a new tainted value (member p t). If the property p itself is also

197



tainted then we propagate the taint (member * t). The intuition is that
the tainted property comes from outside the module or from iterating
through a tainted object, hence it should be considered as a generic access.

9.3.2 Multi-Module Analysis

Since an npm module can in turn use other npm modules, we propose
deploying a membrane around each module to maximize the number of
extracted specifications. We present this setup in Figure 9.6 in which mod-
ule M interacts with two other modules: a direct dependency L and a
plugin P. For now let us consider the relation between module M and the
library L. Every entry point attaches a taint that uniquely identifies that en-
try point to each value that passes through it, e.g., entry point M1 sets taint
m1. When a value passes through an exit point of a module, the analysis
removes all the taints corresponding to that particular module. As a result,
tainted values for module M can only live inside M or inside M’s transitive
dependencies, such as L. This behavior can be observed when following
the information flow between entry point M1 and exit point M3. The taint
m1 is carried by the value all the way through module L until the exit
point M3. Our analysis infers two propagation specifications: M1 → M3
and L1 → L3.

Similarly, the value that enters through M2 inside module M gets at-
tached the taint m2, and further enters through L2 inside module L, where
it gets attached taint l2. Thus, when the value finally reaches the sink in-
side module L, it has two taints, m2 and l2. The analysis generates two
additional sinks, for M2 and for L2, since from the client’s perspective a
value may flow from one of these entry points into an existing sink.

9.3.3 Handling Plugins

One may wonder whether or not a module’s dependencies should be con-
sidered as part of the module’s code as described in the previous section.
We propose distinguishing between two types of dependencies: direct de-
pendencies and plugins. A direct dependency is one that is required ver-
batim by the developer in the source code of the module, and a plugin is
a dependency that is injected by the client code. For registering a plugin,
a client needs to pass a reference to the plugin through the membrane. An
example of this pattern can be observed in Example 5 that shows the pop-
ular express framework instantiated with the plugin body-parser. The
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Figure 9.6: Inferring specifications for multiple modules at once: every entry
point adds a unique taint and every corresponding exit point de-
classifies it. The semantics of shapes and colors are the same as in
Figure 9.4. The dotted arrows depict equivalences between contact
points.

client code loads the body-parser plugin and passes it to the express
module through the use method that is part of express’s membrane.

Example 5
1 const express = require(’express’);
2 const bodyParser = require(’body-parser’);
3 const app = express();
4 app.use(bodyParser.json())

Treating plugins differently when extracting specifications is extremely
important because we do not want to infer specifications that only apply
when a certain plugin is loaded. Instead, we want the specifications to
be as widely applicable as possible. Therefore, direct dependencies that
are loaded inside the module are considered part of the code base of the
module, while plugins are not.

Consider the relation between module M and its plugin P in Figure 9.6.
When the value carrying the taint m4 reaches the membrane that separates
M from P the taint is removed; we say that the value is declassified. Over-
all, for the flow between M4 and M7 that passes through module P, our
analysis infers three specifications: M4 → M6, M5 → M7, and P1 → P2.
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9.4 using taint specifications

The main use case of the extracted taint specifications is for improving
existing program analyses. Most importantly, taint specifications can be
consumed by static analyses. The benefits of hybrid analyses, i.e., static
plus dynamic, are thoroughly explored in the literature. Typically, a static
analysis uses the results from a dynamic analysis, either to get a more
precise result or to get coverage of code that is otherwise difficult to ana-
lyze statically. As mentioned in the introduction, industrial static analyses
sometimes do not even try to analyze Node.js modules, but instead rely on
manually written taint specifications or coarse-grained assumptions about
taint flow in modules. However, such specifications are both error-prone
and hard to maintain. In contrast, our specification generation analysis is
fully automatic, and can therefore easily be re-run whenever modules are
updated. Moreover, we show that there is a significant overlap between the
specifications our analysis generates and existing manually-written mod-
els used by the commercial LGTM taint analysis, demonstrating that our
analysis can infer precise module specifications that resemble and improve
upon hand-written specifications.

Another use case for the extracted specifications is to serve as a form
of documentation for the module they were extracted from. Effectively,
they can act as a contract between module developers and module users
that specifies, for example, who is responsible for sanitizing end user in-
put. We observe that many security vulnerabilities reported by the com-
munity or by researchers, e.g., our vulnerabilities in Chapter 4, are actu-
ally additional sinks. For example, a typical vulnerability occurs when a
user-supplied value is involved in constructing some string that is then ex-
ecuted by the eval function. In some unfortunate situations attackers can
compose the user-supplied value in ways that enables executing malicious
code. To warn users of modules about potential vulnerabilities, inferred
specifications could be shown to developers. For example, an additional
sink could inform the client that an argument passed to a specific method
should be sanitized to prevent malicious code injection attacks.

Finally, we propose using the generated taint specifications for regres-
sion analysis. When a previously unobserved taint specification is sud-
denly generated for a new version of a library, e.g., a new additional sink
appears, both the developer of the library and its clients should be alerted.
Essentially, a change in a taint specification should be treated as a change
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to the API. Automatically inferred specifications could help automate this
kind of regression analysis.

9.5 evaluation

implementation We implement the described specification extraction
technique in a tool called Taser

4. The dynamic analysis component is built
on top of NodeProf [Sun+18], an instrumentation framework for Node.js.
As a starting point for finding additional sinks, we mark 40 methods of
the built-in JavaScript APIs as sinks. These methods cover five well-known
security issues: command injection, code injection, directory traversal, reg-
ular expression injection, and NoSQL injection. We implement limited
support for sanitizers by declassifying any information flow that passes
through a function and an npm module whose name or dynamic access
path contains specific strings, e.g., “escape” or “sanitize”.

benchmarks We apply Taser to 751 npm packages, all from the top-
1000 most depended upon packages. Because some packages contain mul-
tiple modules and because Taser performs a multi-module analysis we
analyze a total of 2,300 modules. For each analyzed npm package, we con-
sider the 200 best rated clients, according to npm stars, and execute their
test suites to analyze the execution with Taser. We stop a test suite after
a timeout of 10 minutes. If available, we also use the test suite of the npm
package itself for driving the dynamic analysis. Ignoring some clients that
we currently cannot analyze, e.g., due to test frameworks Taser does not
support, or due to limitations of our implementation, the evaluation covers
15,892 clients, out of which 5,707 clients trigger at least one creation of a
tainted value.

research questions Our evaluation aims to answer the following
research questions:

rq1 How many taint specifications does Taser extract?

rq2 How efficient is the analysis?

rq3 Are the extracted specifications useful for statically analyzing the
security of npm modules?

4 It is an abbreviation of the longer TAint Spec ExtractoR.
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rq4 How do the extracted specifications compare to manually created
models of npm modules?

rq5 How does a static analysis based on Taser-inferred specifications
compare to the state-of-the-practice npm audit approach?

RQ1: Extracted Taint Specifications

For the 2,300 analyzed modules, Taser extracts 7,840 propagation sum-
maries and 146 additional sinks. For 457 packages, the tool extracts at least
one propagation summary, and for 118 packages, it extracts at least one
additional sink. The overall amount of specifications shows that manually
writing taint specifications for thousands of packages is highly impractical.
Instead, Taser enables extracting specifications automatically and updat-
ing them regularly with little effort.

We also check whether the specifications extracted by Taser contain
advanced language constructs not supported by previous work [AB16;
CAA15]. To that end, we count every propagation summary that involves
(i) instantiated objects, i.e., an instance symbol in one of its access paths,
(ii) callbacks, i.e., two or more parameter symbols in one of its access
paths, or (iii) nested API calls, i.e., two or more return symbols in one of
its access paths. We find 595 propagation summaries with instantiated ob-
jects, 1,467 with callbacks and 1,578 with nested API calls. In total, at least
2,838 specifications, i.e., 35% of the total, could not have been extracted by
those previous approaches (even if re-implemented for JavaScript).

RQ2: Efficiency of the Dynamic Analysis

Generating specifiactions is not something that should be done often, so
having a relatively large one-time cost is acceptable in practice. However,
over time new libraries are created and existing libraries are updated, so
new taint specifications naturally have to be generated for those libraries.
Therefore it is interesting to consider the computational cost of generat-
ing taint specifications. On average, it takes 112 seconds to run the test
suite of one client with the dynamic analysis enabled. This number de-
pends on many factors, such as the size of the test suite, and how many
JavaScript statements are being executed. Thereby, regenerating specifica-
tions for updated libraries and generating specifications for new libraries
can be done in only a few hours per library, which we consider acceptable
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Rule ID New alerts
js/command-line-injection 2

js/file-access-to-http 64

js/path-injection 29

js/reflected-xss 5

js/regex-injection 13

js/remote-property-injection 20

js/user-controlled-bypass 2

js/xss 1

Total 136

Figure 9.7: Improvements to LGTM’s standard analysis; rule IDs are hyper-
linked to their documentation.

for specifications that can be reused repeatedly by a static analysis and
other applications.

RQ3: Usefulness for Static Analysis

We evaluate the usefulness of Taser-extracted taint specifications by inte-
grating them into LGTM, a state-of-the-art, industrial static analysis plat-
form. A free instance hosted at https://lgtm.com continuously checks
more than 130,000 open-source projects (including thousands of npm mod-
ules) for security problems. LGTM reasons about third-party npm modules
based on a limited number of manually created taint propagation models.
We add the extracted specifications into the static analysis and measure
how many additional security alerts the analysis reports.

Figure 9.7 shows the improvements gained from enhancing LGTM’s
standard security analysis suite with the additional sinks and propagation
summaries extracted by Taser. The first column lists the LGTM rule ID;
for instance, js/path-injection flags potential directory-traversal vul-
nerabilities. The second column shows the number of new alerts found
by incorporating our additional sinks and propagation summaries. In to-
tal, Taser enables LGTM to find 136 otherwise missed potential security
problems.
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1 var rimraf = require(’rimraf’);
2 /* omitted */
3 function onDeleteFile(req, res) {
4 var uuid = req.params.uuid,
5 dirToDelete = uploadedFilesPath + uuid;
6 rimraf(dirToDelete, function(error) {
7 /* omitted */
8 });
9 }

Figure 9.8: Example of a new alert found based on a Taser-inferred specifica-
tion.

To better understand the quality of the added alerts, we randomly sam-
ple 30 of the new alerts (five for rules with five or more results, and all
results for the other rules). We find that 24 of them were true positives in
the sense that they exhibit flow from a source to a sink.5 Of the six false
positives, five were due to imprecision of the static analysis (and hence un-
related to Taser), and one was due to a spurious additional sink extracted
by Taser.

Figure 9.8 shows a simple example of a newly identified
alert for the js/path-injection rule, which originates from the
FineUploader/server-examples project from GitHub. The req

argument contains an HTTP request object, so the LGTM security analysis
considers req.params.uuid to be untrusted data since it might originate
from a malicious attacker. After being concatenated with another string, it
is passed to the rimraf function, which (recursively) deletes the file system
path denoted by this string if it exists. The value of req.params.uuid is not
checked, so in particular it could contain “..” components, allowing an
attacker to delete arbitrary files on the file system.

Even though the flow from source to sink is very simple, LGTM does
not flag this out-of-the-box, since it does not have a model of the rimraf

package, and its implementation is too complicated for the static analysis
to model as explained above. Our additional sinks, however, identify the
first parameter of rimraf as a taint sink for js/path-injection, allowing
LGTM to flag this code.

As an example of the use of propagation summaries, we notice that four
of the five new alerts for js/remote-property-injection we examined
made use of the propagation summaries for _.forEach, a lodash function
similar in style to _.forIn. These propagation summaries describe flow

5 How many of these new results correspond to exploitable security vulnerabilities is a different
question, which we do not consider here.
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through a callback parameter, underscoring the importance of supporting
such summaries.

RQ4: Comparison with Manually Created Specifications

The standard LGTM security analysis suite already includes manually writ-
ten models of many popular npm packages, including sinks and taint
propagation rules. By examining our automatically extracted taint speci-
fications for overlap with these manually written models, we find that 12

of our additional sinks and 40 of our propagation summaries correspond
to existing models. On the one hand, this confirms that the specifications
we extract are practically relevant. On the other hand, it also shows that
the vast majority of the Taser-extracted specifications are not yet covered
by manual models.

As one example, our dynamic analysis correctly identifies the first pa-
rameter of the single function exported by the cross-spawn package as a
sink for js/command-line-injection. LGTM includes a manual model
for this. Additionally, Taser identifies an analogous sink for the win-spawn

package, a by now deprecated predecessor of cross-spawn. LGTM does
not include a model for this, presumably because win-spawn is less popu-
lar than cross-spawn, and the LGTM analysis authors focused on popular
packages in writing their models. Our automated approach is not limited
by such considerations and can hence provide a much broader coverage.

RQ5: Comparison with Coarse-Grained Warnings

The current security practice in the npm community is to warn users when-
ever they are relying on a module with a known vulnerability, as imple-
mented, e.g., in the npm audit tool. This approach suffers from two limi-
tations. First, it is limited to previously known and reported vulnerabilities.
Second, it often causes spurious warnings, as a warning is issued for every
module that depends on a vulnerable module, independently of whether
the first module’s use of the second module is affected by the vulnerability.

We show that our approach can help address both these limitations.
First, one can use Taser to automatically find vulnerabilities, i.e., unsani-
tized, undocumented additional sinks. To evaluate the effectiveness of this
approach, we run Taser using benign inputs for 24 vulnerable packages
used in Chapter 7. Our approach finds additional sinks in 11 of the 24

packages. Limitations of the existing policy, i.e., missing sources, and in-
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1 var printer = require("printer");
2 var benignInput = "printerName";
3 printer.printDirect({
4 data: "Test",
5 printer: benignInput,
6 success: function (jobID) {
7 console.log("sent to printer with ID: " + jobID);
8 },
9 error: function (err) {
10 console.log(err);
11 }
12 });

Figure 9.9: Benign input for the vulnerability described in npm advisory num-
ber 27.

sufficient modeling for arrays are the reasons why we do not find the rest
of the sinks.

Second, Taser-extracted specifications can help identify the problematic
entry point of a vulnerable library. This can reduce the false positive rate of
the npm audit solution by only reporting an alarm when user-controlled
values can reach that entry point. While implementing a more precise re-
placement for npm audit based on Taser-extracted specifications is out
of scope for this work, we illustrate its potential effectiveness with the
vulnerability in Figure 9.9. The example shows benign inputs passed to a
module that suffers from a known vulnerability.6 Taser infers the follow-
ing additional sink for the vulnerable module:

(member printer (parameter 0 (member printDirect (root
printer))))

Similarly to Synode, proposed in Chapter 7, instead of alerting all users
of the printer module, as npm audit currently does, the extracted spec-
ification could help raise an alarm only for users that call the vulnerable
entry point with a non-constant string value. As illustrated by this exam-
ple, Taser can help reduce the false positives of the existing technique by
only alerting developers when necessary.

9.5.1 Limitations

Taser is affected by the well-known limitations of dynamic analysis, i.e.,
one can analyze only code that is executed. Therefore, adequate test cover-
age is essential for effectively extracting taint specifications. Even though

6 https://www.npmjs.com/advisories/27
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in our evaluation we do not directly measure or aim to increase cover-
age for the used test suites, by analyzing several clients of a given library,
we increase the chance of observing multiple realistic use cases of the
library. Our hypothesis is that these inputs are representative for most
of the library usages in the wild. Related work employs similar assump-
tions [MMT18; MT19].

In this chapter we do not consider implicit flows which we show in
Chapter 8 to have limited value for detecting integrity issues in server-side
JavaScript. However, future work should evaluate whether this assumption
also holds for extracting taint specifications.

In our evaluation, we judge the usefulness of the extracted summaries by
showing that they improve an existing static analysis. Similarly to the work
of Clapp et al. [CAA15], future work should perform a more extensive
set of experiments in which the quality of the extracted specifications is
directly evaluated, e.g., by extensively comparing with manually written
specifications.

9.6 conclusion

The massive use of third-party libraries in modern JavaScript web devel-
opment calls for new techniques to discover security vulnerabilities. Mod-
ular static taint analysis is a powerful approach, as demonstrated by the
successful commercial tool LGTM, but it critically relies on taint specifi-
cations of the libraries being used. Writing such specifications manually
is demanding and error-prone, so automated solutions are needed. This
chapter presents such a solution. It combines and adapts a number of
ideas from previous work, in particular the idea of inferring information
flow specifications using dynamic analysis [CAA15], the membrane mech-
anism [CM10; Mil06], the use of test suites of open-source library clients,
and the notion of dynamic access paths [MMT18].

Our implementation and experiments demonstrate that this design is
able to automatically detect non-trivial and accurate taint flow specifica-
tions in widely used Node.js modules, which enables an existing static
analyzer, LGTM, to discover many previously unknown security vulnera-
bilities. We believe this approach is a promising alternative to the current
coarse-grained security tools like npm audit that only consider the pack-
age dependency structure but completely ignore the dataflow.
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10
R E L AT E D W O R K

This chapter discusses research work closely related to the current disser-
tation. We start by introducing work on server-side JavaScript security and
on analyzing the implications of (over)using third-party dependencies. We
then discuss existing attacks against web applications and empirical stud-
ies of the web. Furthermore, we present work on analyzing and improving
the performance of JavaScript code, which is critical for preventing avail-
ability attacks against web applications. Finally, we discuss different pro-
gram analyses techniques and tools both aimed at bug detection and at
hardening web applications.

10.1 server-side javascript security

The central thesis of the current dissertation is that the security and privacy
of full-stack JavaScript applications requires special treatment from the se-
curity community. The main particularity of this type of applications is that
they use JavaScript not only on the client-side, but also on the server-side.
In recent years, there were several other research efforts, beyond the ones
presented in this dissertation, for understanding and improving the secu-
rity and privacy of server-side JavaScript code. In this section, we discuss
this work and relate it to different chapters of the thesis.

describing and detecting security issues The first to assess the
security of the Node.js platform were Ojamaa and Düüna [OD12]. They
identify the most serious threats to the ecosystem: the fragility of the run-
time, i.e., the single-threaded nature of the language, the confusing parts
of JavaScript, and malicious packages. In the current dissertation we con-
firm and extend some of these initial assessments (i) by showing that the
abuse of error-prone JavaScript APIs, e.g., eval, can lead to serious injec-
tion vulnerabilities (Chapter 4), (ii) by proposing a novel methodology that
enables an attacker to exploit the single-threaded nature of the runtime for
performing DoS attacks on live websites (Chapter 5) and (iii) by showing
that the continuous rise in the number of dependencies in npm increases
the risk of depending on malicious code (Chapter 2). Davis et al. [DKL17;

211



Dav+18] show that ReDoS vulnerabilities are present in popular modules.
In Chapter 5, we take these observations further and show that ReDoS
also affects real websites. Injections into Node.js code are known to be ex-
ploitable [Sul11] and there is a community-driven effort1 to identify such
problems. In Chapter 4 we perform an in depth study of injection vul-
nerabilities in npm and show that a high percentage of all libraries are at
risk. Gong [Gon18] presents a dynamic analysis system for identifying vul-
nerable and malicious code in npm. He reports more than 300 previously
unknown vulnerabilities, some of which are clearly visible in our analysis
of npm vulnerabilities in Section 2.4.3. Pfretzschner et al. [PO17] describe
four possible dependency-based attacks that exploit weaknesses, such as
global variables or monkeypatching, in Node.js. They implement a detec-
tion of such attacks, but they do not find any real-world exploits. Brown
et al. [Bro+17] demonstrate that the binding code that is responsible for
the interaction between the C++ layer of Node.js and the JavaScript code
is prone to a set of security vulnerabilities. In our work, we focus on bugs
in the JavaScript code and assume that the lower layers are trustworthy.

techniques for hardening applications Multiple techniques
were proposed for increasing the security and privacy of Node.js mod-
ules. We discuss below the most important ones and relate them to our de-
fenses presented in Part III of the thesis, i.e., iFlow in Chapter 8, Synode

in Chapter 7 and Taser in Chapter 9. NodeSentry [GMP14] is a security
architecture for least-privilege integration of Node.js modules. The mech-
anism uses membranes to enforce security checks at different integration
levels. In Chapter 9 we use the same concept for extracting specifications
for modules. When compared to NodeSentry, Synode is more powerful
since it uses a static analysis to perform fine-grained policy enforcement.
BreakApp [Vas+18] proposes OS-level techniques for isolating untrusted
third-party code. This technique is much more expensive than Synode for
protecting against injection attacks, but it can successfully be deployed
against a wider class of attacks. Also compared to Taser, BreakApp is
much more coarse-grained, allowing either isolation or complete integra-
tion. Node.cure [DWL18] is a technique for protecting against algorithmic
complexity attacks, by limiting the amount of time a certain operation can
take. Inspired by Synode, AFFOGATO [GHJ18] proposes using a gray-
box technique for preventing injection attacks in Node.js. AFFOGATO
addresses the precision issues of Synode by proposing a coarse grained

1 https://nodesecurity.io/advisories
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technique that compares similarity of strings at sources with the values at
sinks.

techniques for increasing software quality While software
bugs are not a security issue per se, in certain cases, inadequate software
quality can lead to availability issues, e.g., crashes. Since Node.js is a single-
threaded, event-driven system, concurrency issues can arise due to the
order in which events are spawned and processed. Node.fz [DTL17] iden-
tifies atomicity and order violations while NodeRacer [EM20] finds data
races by analyzing happens-before relations. Mutode [RV18] is a mutation
testing tool that uses existing test suites for generating additional tests
and, thus, increase test coverage. NoRegrets [MMT18] identifies software
evolution problems by finding breaking changes in new releases of npm
packages. It uses the test suites of library’s clients to infer the semantics of
the public API of different versions of a library. When evaluating Taser, we
adapt the NoRegrets infrastructure to our orthogonal goal, i.e., extracting
taint specifications for libraries. NoRegrets+ [MT19] proposes an optimiza-
tion of the process that uses model-based techniques and test generation to
avoid rerunning the tests for each library release. There are also techniques
that address full-stack bugs. For example, Sayagh et al. [SKA17] find config-
uration errors that arise due to conflicting options in different layers of the
stack, while Sahand [AMP16] captures and visualizes asynchronous event
interactions between server-side and client-side code. These approaches
are similar in spirit with the current dissertation, in the sense that they
consider the whole stack, but they address a different problem domain,
i.e., software quality instead of security.

10.2 security implications of third-party dependencies

In Chapter 2 we perform an in depth study of the npm ecosystem for un-
derstanding the risk of depending on malicious or vulnerable code. Below,
we discuss similar studies performed for various ecosystems and possibly
with different goals in mind, not limiting ourselves to security.

dependencies in the server-side javascript ecosystem De-
pendency management for Node.js and its associated risks are a contro-
versial topic, intensely covered in security bulletins and blogs, but also
by the research community. After the left-pad incident shook the Node.js
ecosystem from its foundation, security experts started questioning the use
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and role of micro-packages. Abdalkareem et al. [Abd+17] investigate rea-
sons why developers would use trivial packages. They find that developers
think that these packages are well implemented and tested and that they
increase productivity as the developer does not need to implement such
small features herself. Another empirical study of micropackages by Kula
et al. [Kul+17] has similar results. They show that micropackages have long
dependency chains, something we also discovered in some case studies in
Chapter 2. We also show that these packages have a high potential of be-
ing the target of an attack as they are dependent on by a lot of packages.
Another previously studied topic are breaking changes introduced by de-
pendencies. Bogart et al. [Bog+16] perform a case study interviewing de-
velopers about breaking changes in three different ecosystems. They find
that the npm community values a fast approach to new releases compared
to the other ecosystems. Developers of npm are more willing to adopt
breaking changes to fight technical debt. Furthermore, they find that the
semantic versioning rules are enforced more over time. Similarly, Decan et
al. [DMC17] analyze three package ecosystems, including npm, and evalu-
ate whether dependency constraints and semantic versioning are effective
measures for avoiding breaking changes. They find that both these mea-
sures are not perfect and that there is a need for better tooling. One such
tool can be NoRegrets, a testing technique by Mezzetti et al. [MMT18]
which automatically detects whether an update of a package contains a
breaking change in the API.

vulnerabilities in server-side dependencies As discussed in
the previous section, multiple studies identify vulnerabilities or bugs in
Node.js libraries: Davis et al. [Dav+18] find denial of service vulnerabil-
ities, Gong [Gon18] finds directory traversals and Wang et al. [Wan+17]
analyze concurrency bugs. In this dissertation, we perform two such in-
depth studies , i.e., for finding injection and ReDoS vulnerabilities, while
in Chapter 2 we analyze the likelihood of a given library to transitively
depend on any publicly disclosed vulnerability. Furthermore, there are
studies that look at how frequent security vulnerabilities are in the npm
ecosystem, how fast packages fix these and how fast dependent packages
upgrade to a non-vulnerable version. Chatzidimitriou et al. [Cha+18] build
an infrastructure to measure the quality of the npm ecosystem and to de-
tect publicly disclosed vulnerabilities in package dependencies. Decan et
al. [DMC18] perform a similar study, but they investigate the evolution of
vulnerabilities over time. They find that more than half of the dependent
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packages are still affected by a vulnerability after the fix is released. We
show that the problem is even more serious because for more than half of
the npm packages there is no patch available.

client-side (javascript) dependencies A central theme of the
current dissertation is the excessive code reuse in the JavaScript ecosys-
tem. This is a well known problem and it was extensively studied for tra-
ditional web applications, i.e., in which only the front-end of the applica-
tion is written in JavaScript. Below, we present the most important studies
that analyze the excessive dependencies in client-side code. Nikiforakis et
al. [Nik+12] present a study of remote inclusion of JavaScript libraries in
the most popular 10,000 websites. They show that an average website in
their data set adds between 1.5 and 2 new dependencies per year. Similar to
our work in Chapter 2, they then discuss several threat models and attacks
that can occur in this tightly connected ecosystem. Lauinger et al. [Lau+17]
study the inclusion of libraries with known vulnerabilities in both popular
and average websites. They show that 37% of the websites in their data set
include at least one vulnerable library. This number is surprisingly close to
the reach we observe in npm for the vulnerable code. However, one should
take both these results with a grain of salt since inclusion of vulnerable li-
braries does not necessary lead to a security problem if the library is used
in a safe way. Libert et al. [Lib15] perform an HTTP-level analysis of third-
party resource inclusions, i.e., dependencies. They conclude that nine in
ten websites leak data to third-parties and that six in ten trigger the cre-
ation of third-party cookies. Snyder et al. [STK17] discuss the cost-benefit
analysis of depending on different web APIs. That is, they show that cer-
tain APIs are the culprit of many security vulnerabilities, while only being
used by a small number of websites.

studies of other software ecosystems Software ecosystem re-
search has been rapidly growing in the last years. Manikas [Man16] sur-
veys the related work and observes a maturing field at the intersection of
multiple other research areas. Nevertheless, he identifies a set of challenges,
for example, the problem of generalizing specific ecosystem research to
other ecosystems or the lack of theories specific to software ecosystems.
Serebrenik et al. [SM15] perform a meta-analysis of the difficult tasks in
software ecosystem research and identify six types of challenges. For ex-
ample, how to scale the analysis to the massive amount of data, how to
research the quality and evolution of the ecosystem and how to dedicate
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more attention to comparative studies. Mens [Men16] further takes a socio-
technical view on software maintenance and evolution. He argues that fu-
ture research needs to study both the technical and the social dimensions
of the ecosystem. Our study in Chapter 2 follows this recommendation
as it not only looks at the influence of a package on the npm ecosystem,
but also at the influence of the maintainers. Several related work advo-
cates metrics borrowed from other fields. For example, Lertwittayatrai et
al. [Ler+17] use network analysis techniques to study the topology of the
JavaScript package ecosystem and to extract insights about dependencies
and their relations. Another study by Kabbedijk et al. [KJ11] looks at the
social aspect of the Ruby software ecosystem by identifying different roles
maintainers have in the ecosystem, depending on the number of develop-
ers they cooperate with and on the popularity of their packages. Similarly
to our preliminary study of dependences on injection APIs in Chapter 4

and our ecosystem study in Chapter 2, Mastrangelo et al. analyze the usage
of unsafe API in Java [Mas+15]. Other analyses for Java [Rei+16] and An-
droid applications [BBD16; Li+17] focus on security risks due to libraries,
which shares with this dissertation the idea to consider third-party code as
a potential security threat. Overall, the research field is rising with a lot of
studied software ecosystems in addition to the very popular ones, such as
JavaScript, which is the focus of this dissertation.

ecosystem evolution Studying the evolution of an ecosystem shows
how fast it grows and whether developers still contribute to it. Wittern et
al. [WSR16] study the whole JavaScript ecosystem, including GitHub and
npm until September 2015. They focus on dependencies, the popularity of
packages and version numbering. They find that the ecosystem is steadily
growing and exhibiting a similar effect to a power law distribution as only
a quarter of packages is dependent upon. Comparing these numbers with
our results in Chapter 2, we see a continuous near-exponential growth in
the number of released packages and that only 20% of all packages are
dependent upon. A similar study by Kikas et al. [Kik+17] that includes the
JavaScript ecosystem collects data until May 2016 and focuses on the evo-
lution of dependencies and the vulnerability of the dependency network.
They confirm the same general growth as the previous study. Furthermore,
they find certain packages that have a high impact with up to 30% of other
packages and applications affected. In Chapter 2, we provide an up-to-
date view for these studies and we additionally look at the evolution of
maintainers as they are a possible vulnerability of the ecosystem. The de-
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pendency network evolution was also studied for other ecosystems. Decan
et al. [DMG19] compare the evolution of seven different package managers
focusing on the dependency network. Npm is the largest ecosystem in their
comparison and they discover that dependencies are frequently used in all
these ecosystems with similar connectedness between packages. Bloemen
et al. [Blo+14a] look at software package dependencies in the Linux dis-
tribution Gentoo where they use cluster analysis to explore different cate-
gories of software. German et al. [GAH13] study the dependency network
of the R language and the community around its user-contributed pack-
ages. Bavota et al. [Bav+13] analyze the large Apache ecosystem of Java
libraries where they find that while the number of projects grows linearly,
the number of dependencies between them grows exponentially. Compar-
ing this to the npm ecosystem, we find the number of packages to grow
super-linearly while the average number of dependencies between them
grows linearly.

vulnerability notification Several researchers document the dif-
ficulty of notifying the maintainers of websites or open-source projects
about security bugs in software [Lek+15; Sto+18; Sto+16]. In our work,
we had inconsistent experiences. On one hand, when reporting injection
vulnerabilities in Chapter 4, we had a hard time convincing package main-
tainers to fix their code or even to reply to our requests. Similarly, when re-
porting ReDoS vulnerabilities in Chapter 5, we had a hard time getting the
fixes deployed, but we experienced better interactions with the maintain-
ers through the Node.js security team. On the other hand, when reporting
leaky images vulnerabilities in popular websites in Chapter 6, we experi-
enced quick and helpful responses by all websites we contacted, with an
initial response within less than a week. One reason for this difference
may be that in the latter case we used the bug bounty channels provided
by the websites to report the problems [FAW13; ZGL15]. Another reason
may be that in the former case we interacted with open source package
maintainers, while in the latter we communicated our findings to major,
multi-national, technology companies.

10.3 attacks against web applications

Web application attacks represent a vast and maturing field which is im-
possible to survey in the current dissertation. Therefore, below we limit
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our discussion to work that is closely related to our novel leaky images
attack, discussed in Chapter 6.

same origin exceptions Previous work shows risks associated with
images on the web, such as image-based fingerprinting of browser exten-
sions [SAS17], malicious JavaScript code embedded in SVGs [Hei+11], and
leaking sensitive information, such as the gender or the location of a user
uploading an image [CS16b]. This dissertation introduces a new risk: pri-
vacy leaks due to shared images. Lekies et al. [Lek+15] describe privacy
leaks resulting from dynamically generated JavaScript. The source of this
problem is the same as for leaky images: Both JavaScript code and images
are excepted from the same-origin policy. While privacy leaks in dynamic
JavaScript reveal confidential information about the user, such as creden-
tials, leaky images allow for tracking specific users on third-party websites.
Heiderich et al. [Hei+14] introduce a scriptless, CSS-based web attacks.
The HTML-only variant of leaky images does not rely on CSS and also
differs in the kinds of leaked information: while the attack by Heiderich et
al. leaks content of the current website, our attacks leak the identity of the
user.

social media attacks Wondracek et al. [Won+10] present a privacy
leak in social networks related to our group attack in Chapter 6.3.3. In their
work, the attacker neither has control over the group structure nor can she
easily track individuals. A more recent attack [Su+17] deanonymizes social
media users by correlating links on their profiles with browsing histories.
In contrast, our leaky image attack does not require such histories. An-
other recent attack [Ven+18] retrieves sensitive information of social media
accounts using the advertisement API provided by a social network. How-
ever, their attack cannot be used to track users on third-party websites.

browser fingerprinting Browser fingerprinting is a widely de-
ployed [Aca+13; Aca+14; Nik+13] persistent tracking mechanism. Various
APIs have been proposed for fingerprinting: user agent and fonts [Eck10],
canvas [CLW17; MS12], ad blocker usage, and WebGL Renderer [LRB16].
Empirical studies [Eck10; LRB16] suggest that these technique have enough
entropy to identify most of the users, or at least, to place a user in a small
set of possible users, sometimes even across browsers [CLW17]. The leaky
image attack is complementary to fingerprinting, as discussed in detail in
Section 6.3.6.
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authenticated third-party requests Cross-Site Request Forgery
(CSRF) is similar in spirit to leaky image attacks: Both rely on the fact that
browsers send cookies with third-party requests. For CSRF, this behavior
results in an unauthorized action on a third-party website, whereas for
leaky images, it results in deanonymizing the user. Existing techniques for
defending [BJM08] and detecting [Pel+17] CSRF partially address but do
not fully solve the problem of leaky images (Section 6.5). Another web
tracking mechanism is through third-party requests, such as tracking pix-
els. Mayer and Mitchell [MM12] describe the tracking ecosystem and the
privacy costs associated with these practices. Lerner et al. [Ler+16] show
how tracking in popular websites evolves over time. Several other stud-
ies [Cah+16; EN16; Eng+15; RKW12; Tra+12; Yu+16] present a snapshot of
the third-party tracking on the web at various moments in time. One of
the recurring conclusion of these studies is that few big players can track
most of the traffic on the Internet. We present the first image-based attack
that allows a less powerful attacker to deanonymize visitors of a website.

advanced persistent threats Targeted attacks or advanced per-
sistent threats [Mar+14; SE13] are an increasingly popular class of cyberse-
curity incidents. Known attacks include spear phishing attacks [Blo+14b]
and targeted malware campaigns [Har+14; Mar+14]. Leaky images adds a
privacy-related attack to the set of existing targeted attacks.

beyond javascript attacks User privacy can also be impacted by
security issues in browsers, such as JavaScript bindings bugs [Bro+17],
micro-architectural bugs [Koc+19], and insufficient isolation of web con-
tent [Jia+16]. Neither of these studies explores privacy leaks caused by
authenticated cross-origin image requests. Van Goethem et al. [GJN15] pro-
pose the use of timing channels for estimating the file size of a cross-origin
resource. One could combine leaky images with such a channel to check
if a privately shared image is accessible for a particular user, enabling the
use of leaky images even if the browser would block cross-origin image
requests. One difference between our attack and theirs is that leaky im-
ages provide 100% certainty that a victim has visited a website, which a
probabilistic timing channel cannot provide.
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10.4 empirical studies of (web) code

In the current dissertation, we perform various empirical studies, both of
the npm ecosystem and of live websites. This type of work is sometimes
referred as measurement studies in the security community and it comprises
a huge body of recent work. Below, we limit the discussion to two types
of studies: studies that directly relate to our obfuscation and minification
work in Chapter 3 and general web security studies that relate to our work
on detecting vulnerabilities in live websites, i.e., both the ReDoS work in
Chapter 5 and the leaky images study in Chapter 6.

obfuscation studies Ceccato et al. [Cec+15] analyze the impact of
different obfuscation patterns on Java code in terms of the difference be-
tween the obfuscated and the original code with the help of metrics. Wang
et al. [Wan+18] examine the characteristics of obfuscated iOS Apps, the
popularity of different obfuscation patterns, and the difficulty of reverse
engineering the obfuscated apps. Hammad et al. [HGM17] perform a study
concerning the effect of obfuscated Android apps on anti-malware prod-
ucts. They find that the performance of most anti-malware products is
significantly impacted by obfuscated apps. Moreover, they report that the
tools used for obfuscating the apps frequently result in corrupt apps. De-
pending on the tool, only 0% to 62% of all 250 apps are runnable after
the obfuscation is applied. We observe a similar outcome in the case of
JavaScript obfuscation. Visaggio et al. [VPC13] compare obfuscated and
regular JavaScript code using several metrics, including n-gram, entropy,
and word size. They find that the two kinds of code differ from each other,
in particular, when combining multiple metrics. Xu et al. [XZZ12] study
510 samples of malicious JavaScript code, its use of obfuscation, and how
obfuscation influences whether an anti-virus checker detects the code as
malicious. Fass et al. [Fas+18] propose using a random forest classifier
based on code structure for detecting malicious JavaScript instances. In
contrast, our study in Chapter 3 considers many more scripts, goes beyond
obfuscated code, and addresses different research questions. As discussed
below, there have been various JavaScript and web security related studies,
but none focuses on obfuscation and minification in the web, outside of
malicious code. Therefore, in Chapter 3, we conduct the first comprehen-
sive study examining the prevalence, the performance, and the validity of
obfuscated and minified JavaScript code in the web.
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web security studies Several web security measurements studies of
live websites were performed recently: on the prevalence of the eval func-
tion [Ric+11; YW09], on trust relationships between websites that include
remote libraries and their corresponding library providers [Nik+12], on
the communication between websites and embedded frames with third-
party content [SS13], on cookie stealing [RJLS10; SPK16], on credentials
theft [AHS17], on outdated libraries in the web [Lau+17], on deployment
of CSP policies [Wei+16a] and on XSS vulnerabilities [LSJ13; Mel+18]. To
the best of our knowledge, the current dissertation is the first to focus
on server-side JavaScript issues in live websites and on ReDoS vulnerabil-
ities. Similarly, several measurement studies investigate tracking practices
on the web: by examining third-party requests [Cah+16; EN16; Eng+15;
RKW12; Tra+12; Yu+16] or by analyzing the prevalence of browser finger-
printing [Aca+14; Nik+13]. We are the first to discuss tracking users using
authenticated image requests, i.e., leaky images. However, the prevalence
of this type of tracking in the wild is unknown.

10.5 performance of javascript code and dos attacks

In Chapter 5, we study in depth ReDoS vulnerabilities, an algorithmic com-
plexity attack that affects both open-source libraries and live websites. Be-
low, we discuss related work on detecting such performance problems,
both in JavaScript and in other programming languages.

analysis of redos vulnerabilities Prior work analyzes the worst
case matching time of regular expressions [BI16; BDM14; KRT13; Wei+16b].
Most of this work assumes backtracking-style matching and analyzes reg-
ular expressions in isolation, ignoring whether attacker-controlled inputs
reach it. Recent work by Wüstholz et al. [Wüs+17] considers this aspect.
They combine static analysis and exploit generation to find 41 vulnera-
bilities in Java software. Our work differs in three ways: (i) we analyze
JavaScript ReDoS, which is more serious than Java ReDoS, (ii) we detect
vulnerabilities in real-world websites whose source code is not available for
analysis, and (iii) we uncover ReDoS vulnerabilities containing advanced
features, e.g. lookahead, that are not supported by any of the previous
work. A study performed concurrently with ours considers ReDoS vulner-
abilities in the npm ecosystem and confirms that ReDoS is a serious threat
for JavaScript code [Dav+18].
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regular expressions Regular expressions are often used for sanitiz-
ers and XSS filters. Bates et al. [BBJ10] show that XSS filters are often slow,
incorrect, and sometimes even introduce new vulnerabilities. Hooimeijer
et al. [Hoo+11] show that supposedly equivalent implementations of san-
itizers differ. A study by Chapman et al. [CS16a] shows that developers
have difficulties in composing and reading regular expressions. We are
the first to analyze the impact of this problem on real-world websites. To
avoid mistakes in regular expressions, developers may synthesize instead
of writing them [Bar+14; Bar+16].

algorithmic complexity attacks Differences between average
and worst case performance are the basis of algorithmic complexity at-
tacks. Crosby and Wallach [CW03] analyze vulnerabilities due to the per-
formance of hash tables and binary trees, while Dietrich et al. [Die+17]
study serialization-related attacks. Wise [BJS09], SlowFuzz [Pet+17], and
PerfSyn [TPG18] generate inputs to trigger unexpectedly high complexity.

resource exhaustion attacks SAFER [Cha+09] statically detects
CPU and stack exhaustion vulnerabilities involving recursive calls and
loops. Huang et al. [Hua+15] study blocking operations in the Android
system that can force the OS to reboot when called multiple times. Shan
et al. [SWP17] consider attacks on n-tier web applications and model them
using a queueing network model.

testing regular expressions The problem of generating inputs for
regular expressions is also investigated from a software testing perspective
[LK16; Li+09; SMS12; VHT10]. In contrast to our work, these techniques
aim at maximizing coverage or finding bugs in the implementation.

performance of javascript ReDoS vulnerabilities are a kind of per-
formance problem. Such problems are worth fixing independent of their ex-
ploitability in a denial of service attack, e.g., to prevent websites from being
perceived as slow and unresponsive. Existing work has studied JavaScript
performance issues [SP16] and proposed profiling techniques to identify
them [GPS15; Jen+15; Pra+14]. Studying the exploitability of other perfor-
mance issues beyond ReDoS is a promising direction for future work.
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10.6 program analysis for javascript

This dissertation heavily builds on program analysis techniques, e.g., infor-
mation flow control, membranes, data flow analysis, etc. In the remaining
part of this chapter we discuss closely related work in this area. Once
again, we do not aim to perform a comprehensive literature review due
to the vastness of the field [And+17], but instead, describe the most influ-
ential work. In this section, we limit the discussion to high-level research
directions in program analysis, while in the following sections we present
techniques for hardening application security.

pragmatic program analysis The dynamic and reflective nature
of JavaScript makes it difficult to construct sound, whole-program static
analyses that scale to large real-world applications [AM14; Fel+13; JMT09;
KM19; NHG19; SL19; SP18]. For that reason, much research has been de-
voted to constructing more pragmatic bug-detection tools [And+17; CN15;
Gon+15; Hed+17; Hed+14; Kar+18; PSS15; Sch+13; Sel+18]. We followed in
this tradition when designing both Synode and Taser. Some frameworks
facilitate the implementation of dynamic analyses [Sen+13; Sun+18], in-
cluding NodeProf [Sun+18] that Taser builds upon.

node .js techniques Madsen et al. [MTL15a] enhance the call graph
construction for Node.js applications with event-based dependencies. The
static analysis component of Synode is intra-procedural, but it could ben-
efit from integrating such an inter-procedural approach, which may fur-
ther reduce the false positive rate. Nielsen et al. [NHG19] and Madsen
et al. [Mad+16] propose using feedback-driven program analysis to avoid
analyzing less interesting parts of the application. Most of our program
analyses, e.g., Synode or Taser, could benefit from such optimizations.

membranes The membrane pattern, introduced by Miller [Mil06], has
been applied in several settings [CM10; GMP14; KT15; MMT18; Mil06;
MT19]. The idea is to separate two object graphs, such that operations
taking place on the boundary between the graphs can be captured and
potentially modified. Taser uses membranes at the boundary between a
module and a client, and between different modules, to capture taint flows
between them.
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bug detection Our work relates to program analyses for detecting
bugs in JavaScript code, e.g., finding conflicts between libraries [PDP18],
type inconsistencies [PSS15], naming errors [Liu+16], code quality viola-
tions [Gon+15] or data races [MTL15b]. However, none of these techniques
target security and privacy issues which are at the core of this dissertation.

machine leaning and program analysis In Chapter 3, we pro-
pose using a machine learning model for identifying obfuscated and mini-
fied code. This relates to a growing body of recent work on applying ma-
chine learning to program analysis: for interring types [Hel+18; MPP19],
for identifying concurrency issues [HP18] or for finding bugs [Bad+19;
HP19; PS18]. For a comprehensive survey of this area we point the reader
to the work of Allamanis et al. [All+18]. Below, we discuss existing work
on detecting obfuscated and minified code, mostly by using machine learn-
ing techniques, and discuss how it relates to the classifier we propose in
Chapter 3.

machine learning for obfuscation detection Tellenbach et
al. [TPR16] propose multiple classifiers for detecting obfuscation. However,
they manually specify features of code files, such as the Shannon entropy
or the number of characters per line. Similarly, Likarish et al. [LJJ09] man-
ually extract 60 features from code and propose four different classifiers.
In contrast to both, our AST-based classifier does not require any feature
engineering. Wang et al. [WCW16] present a neural network-based clas-
sifier for detecting malicious JavaScript code. Since attackers often hide
the malicious intent of their scripts using obfuscation, a significant propor-
tion of the dataset used for training their classifier consists of obfuscated
code. Comparable to our approach, instead of defining explicit features,
they learn the features automatically from the code with the help of multi-
ple layers of stacked denoising autoencoders in the neural network. They
transform the code files by replacing each character with a unique binary
vector. The vectors require 20,000 dimensions to represent all characters of
the dataset. Therefore, Wang et al. reduce the dimensionality to 480 using
a dimensionality reduction algorithm. In contrast, we learn a vector repre-
sentation for AST nodes which only requires 45 dimensions. Al-Taharwa
et al. [AT+15] present a Bayesian-based obfuscation detector aimed at man-
ually performed obfuscation. In contrast, we consider automatically trans-
formed code. Kaplan et al. [Kap+11] and Curtsinger et al. [Cur+11] extract
features from AST nodes while preserving the context of nodes. Their clas-
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sifiers specialize on obfuscated and on malicious code, respectively. The
context-based feature extraction mechanism is comparable to the concept
we follow by processing entire ASTs of code files to preserve the context of
all AST nodes. However, all three approaches limit the number of allowed
contexts and reduce the number of features by applying feature selection.
In our case, we do not discard any information from the ASTs so that the
neural network can extract the most descriptive features. There are further
static classifier-based approaches which are less related to our approach.
Jodavi et al. [JAP15] address the detection of obfuscation with an ensem-
ble of multiple one-class SVM classifiers which are trained to recognize
non-obfuscated code using a set of structural and lexical features, such as
the number of dynamic code evaluations and the maximum entropy of
strings.

other techniques for detecting obfuscated code Certain re-
searchers address the problem of detecting obfuscated code by using tech-
niques other than machine learning. Xu et al. [XZZ13] propose an approach
to detect malicious obfuscated code using both static and dynamic analy-
sis. They mostly focus on obfuscation techniques which require the usage
of the eval function, the unescape function, or other related functions.
Using static analysis, they gather information about function definitions
and invocations in the code. At runtime, they examine if new function
definitions and invocations are present to reveal the potentially malicious
part of the code. In contrast, we detect if code is obfuscated without assum-
ing a malicious intent because obfuscation allows for different goals, e.g.,
the protection of intellectual property of code. Furthermore, we include all
techniques offered by the obfuscation tools we use for the study instead of
focusing only on eval based obfuscation. As discovered in Section 3.2.2.2,
most JavaScript obfuscators do not implement eval based techniques. Cec-
cato et al. [Cec+16] propose using out-of-the-box obfuscators for hindering
portability of attacks. We also use readily available obfuscators, but for gen-
erating training data, not for software diversification. Deobfuscation is the
process of reverse engineering obfuscated code. Techniques for this pur-
pose include learning-based approaches [BPS18; RVK15] and semantics-
preserving rewriting of the obfuscated code [LD12; Yak+16]. This work is
complementary to our work and can be applied after detection of obfus-
cated code.
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10.7 hardening web applications

In Part III of the thesis we introduce three techniques for increasing secu-
rity and privacy of web applications: Synode in Chapter 7, iFlow in Chap-
ter 8, and Taser in Chapter 9. These techniques relate to a growing body
of work on hardening web applications, both by the research community
and by practitioners. Below, we discuss the closest related work, omitting
the information flow techniques which are discussed in Section 10.8.

coarse-grained alerts Some tools, most prominently npm audit2

and Snyk3, warn developers about known vulnerabilities in any of their
dependencies. As discussed by Lauinger et al. [Lau+17], an important lim-
itation is that such tools do not analyze how dependencies are used, and
will warn even about vulnerabilities in code that a client does not use, or
not use in a vulnerable way. A more precise analysis, e.g., based on speci-
fications inferred by Taser, avoids the inevitable false positives caused by
coarse-grained alerts.

preventing xss attacks Blueprint [LV09] prevents XSS attacks by
enforcing that the client-side DOM resembles a parse tree learned at the
server-side. Their work shares with Synode the idea of comparing data
prone to injections to a tree-based template. Our work differs by learning
templates statically and by focusing on command injections in Node.js
code. Stock et al. [Sto+14] study DOM-based XSS injections and propose
dynamic taint tracking to prevent them. Similar to Synode, their preven-
tion policy is grammar-based. However, their strict policy to reject any
tainted data that influences JavaScript code except for literals and JSON
would break many uses of eval found during our study. Another differ-
ence is that we avoid taint tracking by statically computing sink-specific
templates. Defenses against XSS attacks [Mit+16; SBS15] use signature-
based whitelisting to reject scripts not originating from the website creator.
SICILIAN [SBS15] uses an AST-based signature; nsign [Mit+16] creates
signatures from script-dependent elements and context-based information.
Both rely on a training phase to discover valid signatures. Synode also
uses templates as a white-listing mechanism. However, we do not rely on
testing to collect these templates but compute them statically. As we show
in Section 7.5 , there may be hundreds or even thousands of paths that

2 https://docs.npmjs.com/cli/audit
3 https://snyk.io/
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reach an injection API call site, i.e., constructing valid signatures for every
path is infeasible.

rewriting-based techniques CSPAutoGen [Pan+16] presents an
automatic way to generate CSP policies on the server-side in order to pro-
tect against illegitimate script execution on the client-side. It uses gASTs,
partial ASTs similar in structure with Synode’s, but different in many ways.
First of all, gASTs are created during a training session, which limits the
approach to behavior observed during the training phase. gASTs also differ
from our partial ASTs in the way they are enforced: gASTs are synthesized
into a JavaScript function that replaces the actual call to the sink. Such a
step cannot be easily implemented for sinks other than eval since these
sinks call outside the JavaScript world. For example, to refactor a call to
exec that uses the awk system utility on Linux, we would need to com-
pletely rewrite awk in JavaScript. Several approaches rewrite JavaScript
code to enforce security policies. Yu et al. [Yu+07] propose a rewriting
technique based on edit automata that replaces or modifies particular calls.
Gatekeeper [GL09] is a static analysis for a JavaScript subset that enforces
security and reliability policies. Instead of conservatively preventing all
possibly insecure behavior, Synode defers checks to runtime when hitting
limitations of purely static analysis. Other techniques [JJM12; Mea+12] re-
place eval calls with simpler, faster, and safer alternatives. Their main
goal is to enable more precise static analysis; Synode focuses on prevent-
ing injections at runtime.

preventing injections via sanitization CSAS [SSS11] uses a
type system to insert runtime checks that prevent injections into template-
based code generators. Livshits et al. [LC13] propose to automatically
place sanitizers into .NET server applications. Similar to Synode, these
approaches at first statically address some code locations and use runtime
mechanisms only for the remaining ones. CSAS differs from our work by
checking code generators instead of final code. The approach in [LC13] ad-
dresses the problem of placing generic sanitizers, whereas we insert run-
time checks specific to injection call sites.

runtime defenses against injection attacks There are several
purely dynamic approaches to prevent injections. XSS-Guard [BV08] mod-
ifies server applications to compute a shadow response along each actual
response and compares both responses to detect unexpected, injected con-
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tent. Instead of comparing two strings with each other, Synode compares
runtime strings against statically extracted templates. ScriptGard [SML11]
learns during a training phase which sanitizers to use for particular pro-
gram paths and detects incorrect sanitization by comparing executions
against the behavior seen during training. Their approach is limited by
the executions observed during training and needs to check all execution
paths, whereas Synode statically identifies some locations as safe. Su and
Wassermann [SW06] formalize the problem of command injection attacks
and propose grammar-based runtime prevention. Their work shares the
idea to reject runtime values based on a grammar that defines which parts
of a string may be influenced by attacker-controlled values. Their analy-
sis tracks input data with special marker characters, which may get lost
on string operations, such as substring, leading to missed injections. In-
stead, Synode does not need to track input values through the program.
Buehrer et al. [BWS05] take a similar approach to mitigate SQL injections.
They construct two parse trees at runtime, one representing the developers
intentions only and one including the user input. They use these trees to
ensure that the user input contains only literals. Their approach is purely
dynamic and employs markers for tracking user input, similar to Su and
Wassermann [SW06]. Ray and Ligatti [RL12] propose a novel formulation
of command injections that requires dynamic taint tracking and a set of
trusted inputs. For Node.js libraries, example inputs are rarely available.

constraint solvers Constraint-based static string analysis, e.g., Z3-
str [ZZG13] is a more heavy-weighted alternative to our static analysis
in Synode. Even though such techniques have the potential of producing
more precise templates, we opted for efficiency when designing Synode,
enabling us to easily apply the analysis to thousands of npm modules.

exploit generation Wassermann et al. address the problem of find-
ing inputs that trigger SQL injections [Was+08] and that exploit XSS vulner-
abilities [WS08] in PHP code. Ardilla [Kie+09] finds and exploits injection
vulnerabilities in PHP through a combination of taint analysis and test gen-
eration. Instead of triggering attacks, the enforcement mechanisms in this
dissertation address the problem of preventing attacks.
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Work Analysis Explicit Obs. Hidden

Vogt et al. [Vog+07] dynamic X X -
Jang et al. [RJLS10] hybrid X X -
Chugh et al. [Chu+09] hybrid X X X
Tripp et al. [TFP14] hybrid X - -
Chudnov & Naumann [CN15] dynamic X X NSU
Hedin et al. [Hed+14] dynamic X X NSU
Bichhawat et al. [Bic+17] dynamic X X PU
Kerschbaumer et al. [Ker+13] dynamic X X -
Bauer et al. [Bau+15] dynamic X - -
De Groef et al. [DG+12] dynamic MOD MOD MOD
Austin & Flanagan [AF12] dynamic MOD MOD MOD

Table 10.1: JavaScript information flow analyses and the flows they support: X=
considers this flow, - = does not consider this flow, NSU and PU =
may abort due to No Sensitive Upgrade (NSU) or Permissive Up-
grade (PU) checks, respectively, and MOD = may modify program
behavior.

10.8 information flow analysis

In this section we discuss information flow control, a program analysis
technique that is at the core of our methodologies in Chapter 8 and Chap-
ter 9. Denning and Denning pioneered the development and formal de-
scription of static information flow analyses [Den76; DD77]. Fenton stud-
ies purely dynamic information flow monitors [Fen74]. A huge body of
work has been created during the years to refine Dennings’ and Fenton’s
ideas and to adapt them to various languages. Table 10.1 presents some
of the more recent tools and shows what kinds of flows they consider. We
look at three types of information flow as introduced in Chapter 8: explicit,
observable implicit and hidden implicit flows. Many analyses, including
Taser, consider only explicit flows [SAB10]. Among the analyses that con-
sider implicit flows, the majority stop or modify the program as soon as a
hidden flow occurs.

information flow analysis for javascript Chugh et al. pro-
pose a static-dynamic analysis that reports flows from code given to eval
to sensitive locations, such as the location bar of a site [Chu+09]. Austin
and Flanagan address the problem of hidden implicit flows [AF09; AF10],
as discussed in detail in Section 8.2. Hedin and Sabelfeld propose a dy-
namic analysis that implements the No Sensitive Upgrade (NSU) strategy,

229



discussed in Section 8.3.1, for a subset of JavaScript [HS12]. They develop
JSFlow, which supports the full JavaScript language, but it requires in-
serting upgrade statements manually [Hed+14]. Birgisson et al. propose
to automatically insert upgrade statements [BHS12] by iteratively execut-
ing tests under the NSU monitor. Their approach is implemented for a
JavaScript-like language, whereas iFlow supports the full JavaScript lan-
guage. Our monitor in Chapter 8 implements the Permissive Upgrade (PU)
strategy to insert upgrade statements, which reduces the number of up-
grade statements and increases permissiveness. Bichhawat et al. propose
a variant of PU, where the program is terminated whenever a partially
leaked value may flow into the heap [Bic+14]. A WebKit-based browser by
Kerschbaumer et al. [Ker+13] balances performance and permissiveness
by probabilistically switching between taint tracking and observable track-
ing and deploys crowdsourcing techniques to discover information flow
violations by Alexa Top 500 pages.

other work on information flow analysis Balliu et al. study
a family of information flow trackers for different kinds of flows and pro-
pose security conditions to evaluate their soundness [BSS17]. In Chapter 8,
we borrow their conditions to prove the soundness of our monitor for
NanoJS. Bao et al. show that considering implicit flows can cause a sig-
nificant amount of false positives and propose a criterion to determine a
subset of all conditionals to consider [Bao+10]. Chandra and Franz propose
a VM-based analysis for Java that combines a conservative static analysis
with a dynamic analysis to track all three kinds of flows considered in
Chapter 8 [CF07]. Dytan is a dynamic information flow analysis for bi-
naries that supports both explicit and observable implicit flows [CLO07].
Myers and Liskov introduce Jif, a language for specifying and statically en-
forcing security policies for Java programs [ML00]. A survey by Sabelfeld
and Myers provides an overview of further static approaches [SM03].

applications of information flow analysis Information flow
analysis is widely used to discover potential vulnerabilities. All approaches
we are aware of consider only a subset of the three kinds of flows. Flax uses
taint analysis to find incomplete or missing input validation and generates
attacks that try to exploit the potential vulnerabilities [Sax+10]. Lekies et
al. [LSJ13] and Melicher et al. [Mel+18] propose a similar approach to de-
tect DOM-based XSS vulnerabilities. Jang et al. analyze various web sites
with information flow policies targeted at common privacy leaks and at-
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tack vectors, such as cookie stealing and history sniffing [RJLS10]. Their
analysis considers observable implicit flows, but not hidden implicit flows.
Sabre analyzes flows inside browser extensions to discover malicious ex-
tensions [DG09]. Taint analysis [CLO07], a light version of information
flow control that only considers explicit flows, has been used for checking
security properties [Arz+14; Gua+11; NS05; Tri+09], and for other analysis
problems [GLR09; HZ16]. In particular, there are both static [NHG19] and
dynamic [Kar+18; LSJ13] taint analyses for JavaScript. Taint specifications
inferred with an Taser-like approach could in principle be plugged into
any static taint analysis that involves third-party modules. To the best of
our knowledge, we are the first to present such an approach for static taint
analysis for JavaScript. To facilitate the use of taint analysis for checking se-
curity properties, some work proposes to infer which functions to consider
as sources, sinks, and sanitizers [Chi+19; RAB14]. In contrast, Taser infers
specifications that summarize flows through entire third-party modules.

specifications of libraries and frameworks The idea of using
pre-generated specifications to aid static analysis of library and framework
code has been pursued previously [AB16; Bas+18; CAA15; HSC15; PJR19].
The only work other than Taser that uses a dynamic analysis to infer taint
specifications is the technique by Clapp et al. [CAA15], which infers spec-
ifications for the Android SDK. Our work differs in multiple ways. First,
we introduce the idea of membrane-based, multi-module analysis, allow-
ing Taser to infer specifications for all modules used directly or indirectly
by a client. In contrast, Clapp et al. [CAA15] infer specifications from a
client’s usage of a single framework. Second, we use a fine-grained specifi-
cation mechanism that can track flows at the level of individual properties
and can express flows via callbacks, while their specifications are coarse-
grained, i.e., only tracking flows between parameters and return values.
Finally, our analysis accounts for the dynamic nature of JavaScript, e.g.,
using the star expression (*) as described in Section 9.2.2.

studies of information flow King et al. [Kin+08] share our goal
from Chapter 8 of understanding practical trade-offs between explicit and
implicit flows. They empirically study implicit flows detected by a static
analysis in six Java-based implementations of authentication and crypto-
graphic functions. They report that most of the reported policy violations
are false positives, mostly due to conservative handling of exceptions. Our
work focuses on dynamic analysis for JavaScript-based implementations,
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which gives rise to a class of observable secrecy monitors that is not rele-
vant in a static setting. Another empirical study of information flows is by
Masri and Podgurski [MP09]. Their work studies how the length of flows
(measured as the length of the static dependence chain), the strength of
flows (measured based on entropy and correlations), and different kinds
of information flows (explicit and observable implicit) relate to each other.
Similar to our methodology in Chapter 8, Masri and Podgurski target dy-
namic analysis. Our work differs by addressing different research ques-
tions, a different language, and by considering hidden implicit flows.
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11
C O N C L U S I O N S

In this final chapter, we recapitulate the high-level contributions of this
dissertation and we highlight the most important future work directions.

11.1 summary of contributions

In the first part of this thesis, we provide empirical evidence that code
transformations are widespread on the web and that excessive code reuse
in the server-side ecosystem increases the risk of depending on malicious
or vulnerable code. In the second part, we present novel vulnerabilities and
attacks. First, we study in detail two security problems that are aggravated
by the new threat model for JavaScript: injection and regular expression
denial of service (ReDoS) vulnerabilities. We show that these problems are
widespread in server-side library code and that a motivated attacker can
exploit such vulnerabilities in live, real-world websites. Second, we present
a novel targeted privacy attack against web applications, called leaky im-
ages. We show that an attacker can mount such an attack against users of
popular websites and that automatically detecting vulnerable websites re-
quires full-stack support. In the third part of the thesis, we propose novel
techniques or improvements to existing techniques for taking into account
the identified particularities and vulnerabilities. First, we propose Synode,
a tool for defending against injection attacks at runtime and show that
a lightweight data-flow analysis is enough for handling most identified
injection vulnerabilities. Second, we show that taint analysis suffices for
most of the vulnerabilities in server-side JavaScript code. However, when
dealing with client-side confidentiality issues or when the analysis aims
to consider malicious code, implicit flows should be taken into account
as well. Finally, we present Taser, a technique for dynamically extracting
taint specifications for JavaScript libraries. We show that this approach im-
proves the static analysis of server-side JavaScript.
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11.2 future work

As discussed in Chapter 10, studying the security and privacy of full-stack
JavaScript web applications is a new research direction with multiple re-
cent contributions. Below, we highlight a set of future work ideas directly
connected with this dissertation.

Security Implications of JavaScript Everywhere In this disserta-
tion, we discuss in detail the security implications imposed by the
new threat model introduced by server-side JavaScript. We show
that developers have a hard time accounting for the new security
assumptions, such as the lack of sandbox. Recently, there is an in-
creasing tendency to run JavaScript in various other use cases, be-
yond web applications: for mobile development, for IoT applications
or even for developing standalone desktop applications. Naturally,
these new use cases come with their unique threat models and, thus,
reusing code developed for web applications in these new settings
may lead to surprising results. We believe that future work should
explore the implications of running legacy code on the plethora of
emerging JavaScript platforms.

Full-Stack JavaScript Program Analysis Detecting certain web
vulnerabilities require the analysis of full-stack information flows,
e.g., privacy leaks (including leaky images), stored XSS, peer-to-peer
ReDoS. To that extent, future work should develop an end-to-end
taint analysis that allows taint propagation between client, server and
the database. In this way, the security analyst can write comprehen-
sive policies that cover realistic system-level interactions.

WebAssembly Program Analysis WebAssembly is a novel binary
format for the web that is supported by all the major browsers and
server-side platforms. JavaScript and WebAssembly code can easily
communicate bidirectionally, therefore, future work on program anal-
ysis of web applications should consider information flows across
this language boundary. Fortunately, WebAssembly was designed
with program verification in mind [Haa+17] and first analysis frame-
works are starting to appear [LP19].

Comparison of Algorithmic Complexity Attacks Considering our
work on denial-of-service attacks in Chapter 5, a related research
idea is the comparison of algorithmic complexity attacks on different
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web server architectures. More precisely, one should compare single-
threaded, event-driven environments, e.g., Node.js, with more tradi-
tional web servers, e.g., Apache or Tomcat, from an attack bandwith
perspective.

Reusable Vulnerabilities and Exploits Another idea for future
work is to aggregate a benchmark suite of vulnerabilities in JavaScript
code, together with their exploits. Such a suite can be used for com-
paring existing and future solutions aimed at hardening the security
of JavaScript code. Moreover, it can serve as an example of bad prac-
tices for developers to avoid. An initial proof for the claim that such
benchmarks are needed in the community is that the exploits we
wrote for evaluating Synode were reused by multiple other research
groups to evaluate their tools.

Information Gathering from Code or System Behavior Our re-
sults in Chapter 3 and Chapter 5 provide early evidence that an at-
tacker can obtain important information about the components and
tools used on the server-side by analyzing either the response of the
server to certain requests or the structure of the client-side code. Fu-
ture work should pursue this idea further by analyzing the corre-
lation between libraries and idioms used on the client-side and the
ones on the server-side. Under the assumption that full-stack devel-
opers easily migrate between the two, with high probability such
correlations should exist. Another research hypothesis worth explor-
ing is whether redundant regular expression checks deployed both
on the client- and on the server-side can be used to improve our de-
tection of websites vulnerable to ReDoS attacks.
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