Evaluation of **HIMMO with Long Identifiers** an Extension of the HIMMO Key Establishment Scheme

Cristian-Alexandru STAICU

EIT ICT Labs Master School, University of Twente, University of Trento University Supervisor: Dr. Andreas Peter Industry Supervisor: Dr. Oscar Garcia-Morchon

28th August 2014

1 Introduction and Problem Statement

2 Design

3 Implementation

4 Evaluation

Cristian-Alexandru STAICU (EIT ICT Labs N Evaluation of HIMMO with Long Identifiers

< 4 **₽** ► <

Key Establishment / Key Predistribution

Key Establishment

Key establishment is any process whereby a shared secret key becomes available to two or more parties, for subsequent cryptographic use. (Handbook of Applied Cryptography)

Introduction and Problem Statement

Polynomial Schemes

Observations

$$F(X, Y) = F(Y, X)$$

Interpolation: $\alpha + 1$ colluding nodes can retrieve F

Cristian-Alexandru STAICU (EIT ICT Labs N Evaluation of HIMMO with Long Identifiers

э

< 17 ▶

Internet of Things

Properties

- lightweight devices,
- real time,
- high number of devices,
- multi-interface,
- multimodal interaction,
- huge amount of data,
- limited bandwidth,
- context aware,
- security and privacy issues.

HIMMO Key Establishment Scheme

Hide Information Problem

Let $f(X) \in \mathbb{Z}_N[X]$ be a polynomial of degree at most α and let $f(\xi)_b = \langle \langle f_b(\xi) \rangle_N \rangle_{2^b}$ be the last *b* bits of the evaluated polynomial modulo *N*. The HI problem is to construct a polynomial time algorithm that can reconstruct *f* based on $k \ge 1$ different pairs $(\xi, f_b(\xi))$.

Mixing Modular Operations Problem

Let $m, q_1, q_2, ..., q_m, N$ be some positive integers, $f_1, f_2, ..., f_m$ be polynomials of degree at most $\alpha \ge 2$. Having $h(\xi) = \left\langle \sum_{i=1}^m \langle f_i(\xi) \rangle_{q_i} \right\rangle_N \quad \forall \xi \in \mathbb{Z}$, the MMO problem is to construct a polynomial time algorithm that recovers $f_1, f_2, ..., f_m$ given m, α, N and $k \ge 1$ pairs $(\xi_i, h(\xi_i))$

・ロト ・ 一下・ ・ ヨト

Problem Statement

- Can we increase security in other way then by using larger degree polynomials?
- Can we use multiple parallel systems with small key size?
- How well does HIMMO perform (computation time, memory?
- How well does it perform compared with other schemes?

Contributions

- Described HIMMO with long identifiers (HIMMO-LI), an extension that aims at higher security and scalability. Designed algorithms for HIMMO-LI.
- Implemented and evaluate the designed algorithms on a 8-bit AVR microcontroller.
- Compared HIMMO with other key establishment schemes.

1 Introduction and Problem Statement

2 Design

3 Implementation

4 Evaluation

Cristian-Alexandru STAICU (EIT ICT Labs N Evaluation of HIMMO with Long Identifiers

< 🗇 🕨 🔸

Setup and Node Registration in HIMMO-LI

Initialization Phase

- TTP se key size (b), identifiers size (B), public modulus (N) and m moduli (q_i).
- TTP selects m symmetric bivariate polynomials f_i ∈ Z_{qi}[X, Y] of degree α.
- N, q_i are $(\alpha + 1)B + b$ bits long numbers

Registration Phase

TTP computes and delivers to each node η :

$$\mathrm{KM}_{\eta,j} = \left\langle \sum_{i=1}^{m} \left\langle f_{i,j}(\eta) \right\rangle_{\boldsymbol{q}_i} \right\rangle_{\boldsymbol{\Lambda}}$$

Operational Phase in HIMMO-LI

Operational Phase

- The difference from Blundos: only the last b bits are used as key.
- Every two nodes can compute a shared key:

$$\mathcal{K}_{i,j} = \left\langle \left\langle \sum_{k=0}^{\alpha} \mathrm{KM}_{i,k}(\xi_j)^k \right\rangle_{N} \right\rangle_{2^{b}}$$

• The computed keys are approximately equal:

$$K_{i,j} \in \{\langle K_{j,i} + kN \rangle_{2^b} | -\Delta \le k \le \Delta\}, \ \Delta = 3m + \alpha + 1.$$

HIMMO vs. HIMMO-LI

э

< A > < 3

э

More is Less

Data: $\alpha, b, B, \eta', \text{KM}_{n,j}$ where $j \in 0, 1, ..., q$ **Result**: $\langle \langle \sum_{i=0}^{\alpha} \operatorname{KM}_{\eta,j} \eta^{\prime j} \rangle_N \rangle_{2^b}$ 1 $key = \langle \mathrm{KM}_{n,\alpha} \rangle_{2^b}$ 2 $temp = \langle \mathrm{KM}_{n,\alpha} \rangle_{2(\alpha+2)B}$ **3** for $j = \alpha \rightarrow 1$ do if $j = \alpha - 1$ then Δ $temp = (temp \gg b) \cdot \eta'$ 5 else 6 $temp = (temp \gg B) \cdot \eta'$ 7 end 8 $temp = \langle temp \rangle_{2^{(j+2)B}}$ 9 $temp = temp + KM_n i \gg b$ 10 $key = \langle key \cdot \eta' \rangle_{2^b}$ 11 $key = \langle key + \langle \mathrm{KM}_{n,i} \rangle_{2^b} \rangle_{2^b}$ 12 $key = key + temp \gg (j+1)B$ 13 14 end

HIMMO Transformation

Data:
$$\alpha, b, B, \eta', \mathrm{KM}'_{\eta,j}$$
 where $j \in 0, 1, ..., \alpha$
Result: $\langle \langle \sum_{j=0}^{\alpha} \mathrm{KM}_{\eta,j} \eta'^j \rangle_N / 2^{\alpha B} \rangle_{2^b}$
1 $key = \mathrm{KM}'_{\eta,\alpha}$
2 for $j = \alpha \to 1$ do
3 $| key = key * \eta'$
4 $| key = key \gg B$
5 $| key = key + \mathrm{KM}'_{\eta,j}$
6 end
7 $key = key \gg B$

TTP Transforms the Key Material

$$\mathrm{KM}_{j}^{\prime} = \left\langle \mathrm{KM}_{j} \ast 2^{\alpha B} \right\rangle_{N}$$

Theoretical Analysis for the Algorithms

Parameter	More is Less	HIMMO Transformation	
		Performance Gain	
Time	$\mathcal{O}\left(\frac{n(\alpha^2 B^2 + \alpha b^2)}{\text{CPUW}^2}\right)$	$\mathcal{O}\left(\frac{n(\alpha B^2 + \alpha b^2)}{\mathrm{CPUW}^2}\right)$	
FLASH	$\mathcal{O}\left(\frac{n(\alpha^2B+\alpha b)}{\text{CPUW}}\right)$	$\mathcal{O}\left(\frac{n \alpha B}{\text{CPUW}}\right)$	
RAM	$\mathcal{O}\left(\frac{n(\alpha B+b)}{\text{CPUW}}\right)$	0	

Introduction and Problem Statement

2 Design

Implementation

4 Evaluation

Cristian-Alexandru STAICU (EIT ICT Labs N Evaluation of HIMMO with Long Identifiers

-

A (1) > 4

Implementation

STK600 / Atmega 128L Implementation

- 8 bit RISC architecture with 32 registers,
- 128K FLASH, 4K EEPROM, 4K RAM,
- AVR Dragon board on JTAG interface for debugging,
- multi-precision arithmetic to emulate long number operations,
- use EEPROM memory for output,
- use interrupts to handle the timer's overflow.

Parameters to be Evaluated

- number of cycles / CPU time measure using hardware counter TCNT1,
- flash memory (code size + key material) measure using the IDE static output,
- RAM memory measure using the IDE static output,
- quality of the implementation / correctness of the computed key,
- number of HIMMO instances needed to compute a key of certain length.

Implementation

Testing and Data Collection Framework

Cristian-Alexandru STAICU (EIT ICT Labs N Evaluation of HIMMO with Long Identifiers

< 🗇 🕨

э

Introduction and Problem Statement

2 Design

3 Implementation

• • • •

Computing 128-bit key

< 🗇 🕨

Collusion Attacks. Security Properties

 $\mathrm{ld} = \mathbf{c} + \alpha + \mathbf{1}$

Bits of Security

sb = f(ld, elsize)

Cristian-Alexandru STAICU (EIT ICT Labs N Evaluation of HIMMO with Long Identifiers

→ < ∃ >

Achieving Certain Levels of Security using Different Instances

Key Computation Time Function of Lattice Dimension

Computation Time for Security Bits

Cristian-Alexandru STAICU (EIT ICT Labs N Evaluation of HIMMO with Long Identifiers

< 67 ▶

25 / 28

Memory for Security Bits

28th August 2014 26 / 28

< 🗗 🕨

HIMMO-LI vs. Other Schemes for 80 Bits of Security

Protocol	Bandwidth	Round	CPU	Security Properties
		Trips	Time	
ECDH	480	1	3960.70	key confirmation,
				forward secrecy
ECDH-	704	1	11901.92	key confirmation,
ECDSA				authentication,
				forward secrecy
HIMMO-	320	0/1	202.01	key confirmation,
AES				authentication
IBE	700+key	0/1	>6213.6	key confirmation,
	size			authentication,
				forward secrecy

- Designed algorithms for the More is Less and HIMMO Transformatio, n optimizations of the HIMMO scheme, to include the long identifiers extension.
- Implemented them in C and ASM for ATmega128 microprocessor, but also in Java.
- Observed certain parameters of the obtained implementations and automatized the process.
- Compared the results with the ones in the literature for similar key agreement schemes.
- Run more than 10000 tests on the ASM implementation, hinting on its correctness