
SECBENCH.JS: An Executable Security Benchmark
Suite for Server-Side JavaScript

Masudul Hasan Masud Bhuiyan
CISPA Helmholtz Center for Information Security

masudul.bhuiyan@cispa.de

Adithya Srinivas Parthasarathy
IIITDM Kancheepuram

adithyasrinivas11@gmail.com

Nikos Vasilakis
Brown University & MIT

nikos@vasilak.is

Michael Pradel
University of Stuttgart

michael@binaervarianz.de

Cristian-Alexandru Staicu
CISPA Helmholtz Center for Information Security

staicu@cispa.de

Abstract—Npm is the largest software ecosystem in the world,
offering millions of free, reusable packages. In recent years,
various security threats to packages published on npm have been
reported, including vulnerabilities that affect millions of users.
To continuously improve techniques for detecting vulnerabilities
and mitigating attacks that exploit them, a reusable benchmark
of vulnerabilities would be highly desirable. Ideally, such a
benchmark should be realistic, come with executable exploits,
and include fixes of vulnerabilities. Unfortunately, there currently
is no such benchmark, forcing researchers to repeatedly develop
their own evaluation datasets and making it difficult to compare
techniques with each other. This paper presents SECBENCH.JS,
the first comprehensive benchmark suite of vulnerabilities and
executable exploits for npm. The benchmark comprises 600
vulnerabilities, which cover the five most common vulnerability
classes for server-side JavaScript. Each vulnerability comes with
a payload that exploits the vulnerability and an oracle that
validates successful exploitation. SECBENCH.JS enables various
applications, of which we explore three in this paper: (i) cross-
checking SECBENCH.JS against public security advisories reveals
168 vulnerable versions in 19 packages that are mislabeled in
the advisories; (ii) applying simple code transformations to the
exploits in our suite helps identify flawed fixes of vulnerabilities;
(iii) dynamically analyzing calls to common sink APIs, e.g.,
exec(), yields a ground truth of code locations for evaluating
vulnerability detectors. Beyond providing a reusable benchmark
to the community, our work identified 20 zero-day vulnerabilities,
most of which are already acknowledged by practitioners.

I. INTRODUCTION

JavaScript is one of the most popular programming lan-
guages, and its continued growth is supported by the npm
ecosystem, a repository with more than two million reusable
packages. Unfortunately, vulnerabilities are common in npm
and pose a major threat to applications and the ecosystem
as a whole. A large body of recent research is devoted to
the security of the npm ecosystem in general, and server-side
JavaScript, in particular. Many papers study specific classes
of security problems, e.g., code injection [1], [2], ReDoS [3],
[4], prototype pollution [5], [6], hidden property attacks [7],
path traversal [8], supply chain attacks [9]–[11], outdated [10],
[12], [13] or trivial [14] dependencies, and bugs in low-level
code [15], [16]. There also is work on developing new defenses

and detection techniques using static [2], [5], [11], [17]–[20],
dynamic [21]–[26], or hybrid [1], [9] analyses.

Progress in a research community often gets fueled by a
reusable benchmark. For example, such benchmarks serve
to assess the relative merits of different contributions in
databases [27], parallel processing [28], graphics [29], ma-
chine learning [30], and bug detection and repair [31].

Unfortunately, despite the importance of server-side
JavaScript security, there currently is no comprehensive bench-
mark of vulnerabilities. Instead, researchers often rely on ad-
hoc sets of programs collected manually by the authors of
the respective papers. While benchmark sets are not without
limitations, the lack of a security-oriented benchmark suite for
npm has important implications: (1) it slows down research, as
authors of each paper have to look for a new set of benchmarks
that satisfies their needs and may convince reviewers, and (2)
it obfuscates the true merits of different techniques, as they are
not compared across a single set of vulnerabilities. A reusable
benchmark suite of npm vulnerabilities would alleviate these
problems, and help improve experimental techniques and met-
rics in this area. Specifically, a successful benchmark should
provide the following properties:

• Realistic: We aim at a benchmark suite built from a
diverse set of real-world software, with as few modifi-
cations of the original code as possible. Such realism
ensures that success on the benchmark is likely to gen-
eralize to other real-world security problems.

• Executable: We want the suite to include inputs that
trigger the vulnerabilities and a runtime oracle that checks
whether an attempt to exploit a vulnerability indeed
triggers the effect anticipated by the attacker. Having such
executable exploits serve as evidence that a vulnerability
can be exploited, enables evaluating runtime detection
and mitigation techniques, and allows for studying the
runtime properties of vulnerabilities.

• Two-sided: We aim at a benchmark that includes both
vulnerable and fixed versions of the code. Providing both
sides is important for measuring the false positive rate of
detection and mitigation techniques, but also for studying
how vulnerabilities get fixed.

1



TABLE I
COMPARISON WITH EXISTING VULNERABILITY BENCHMARKS AND

DATASETS.

Benchmark/dataset Language V
ul

ne
ra

bi
lit

ie
s

R
ea

lis
m

E
xe

cu
ta

bl
e

ex
pl

oi
ts

Tw
o-

si
de

d

V
et

te
d

CGC [32] C 590 ✗ ✓ ✗ ✓
Juliet [33] C/C++, Java, C# 121,922 ✗ ✓ ✓ ✓
LAVA-M [34] C 2,265 ✗ ✓ ✓ ✗
BigVul [36] C/C++ 3,745 ✓ ✗ ✓ ✗
Ferenc et al. [35] JavaScript 1,496 ✓ ✗ ✓ ✗
VulinOSS [41] various 17,738 ✓ ✗ ✗ ✗
Magma [38] C 118 ✓ ✗ ✓ ✓
Ghera [42] Java/Android 25 ✓ ✓ ✗ ✓
Ponta et al. [39] Java 624 ✓ ✗ ✓ ✓

SECBENCH.JS JavaScript 600 ✓ ✓ ✓ ✓

• Vetted: It is important to study each vulnerability in the
benchmark suite to confirm its existence, ensure that it
falls under a certain attack class, and generates appro-
priate metadata. This requirement is in contrast to large-
scale, automatically gathered datasets, which are used,
e.g., to train deep learning-based vulnerability detectors,
and typically suffer from some noise.

To the best of our knowledge, there currently is no bench-
mark of vulnerabilities that matches all four of the above
criteria. Table I summarizes the most closely related existing
benchmarks and datasets. One group of them consists of
synthetic vulnerabilities, either created manually [32], via
template-based code generation [33], or automatically by
mutating existing code [34]. These benchmarks lack realism
and hence do not suit our needs. Another group consists of
automatically gathered datasets, e.g., created based on com-
mit messages that mention a vulnerability [35], [36]. These
datasets do not come with executable exploits and lack manual
vetting, which causes noise, e.g., in the form of unrelated code
changes tangled with a commit [37]. Finally, the third group of
benchmarks consists of manually curated vulnerabilities [38],
[39], but lack executable exploits that use the vulnerabilities to
trigger a security-relevant action. For example, MAGMA [38]
provides inputs that show that vulnerabilities can cause a crash,
but not that they can be further exploited by an attacker.
Beyond the benchmarks and datasets listed in Table I, there
are collections of general bugs [31], [40], which are inspiring
but do not focus on security-related problems.

The SECBENCH.JS benchmark suite: This paper presents
SECBENCH.JS, the first benchmark suite of JavaScript vulner-
abilities that fulfills all four of the above requirements. The
benchmark consists of 600 publicly reported vulnerabilities
contained in widely-used advisory databases, such as Snyk
and GitHub Advisories. To ensure realism, all vulnerabilities
are included as-is, without any simplifications of the vulner-
able packages. SECBENCH.JS spans the five most common

threat classes in the considered databases for benign, server-
side JavaScript: path traversal, prototype pollution, command
injection, denial-of-service, and code injection. Each vulnera-
bility in SECBENCH.JS includes an executable exploit, i.e., an
attack input that triggers the vulnerability and causes behavior
unexpected by the vulnerable software package. Additionally,
we also provide test oracles to judge the success of each
exploit. The benchmark is two-sided: if available, it includes a
fix of the vulnerability where the provided exploit often fails.
Finally, the benchmark is vetted, as we manually validate each
vulnerability.

To showcase the usefulness of SECBENCH.JS, we report
several applications of SECBENCH.JS that, without our suite,
would be costly or error-prone to carry out:

• Finding mislabeled versions: By running our exploits
on different versions of the vulnerable packages, we
identify 168 versions in 19 packages that are incorrectly
labeled as not vulnerable in the advisory database. In two
cases, the mislabeling even affects the latest release of
the package, meaning the packages suffer from zero-day
vulnerabilities.

• Finding flawed patches: We apply four simple code
transformations to the prototype pollution exploits in
SECBENCH.JS to test the deployed patches against vari-
ants of the original attack. This experiment identifies 18
flawed patches, i.e., new vulnerabilities, which at the time
of writing have been assigned 12 CVEs.

• Dynamically identifying sinks: Using dynamic analysis,
we automatically identify the code locations where the
payload provided by an exploit reaches a sensitive API,
called sink, for 94.5% of the vulnerabilities in our suite.
The sink location can be used, e.g., to validate the reports
of taint-style, static analyses.

In summary, this paper contributes the following:

• The first benchmark suite of server-side JavaScript vul-
nerabilities. In contrast to existing benchmarks and
datasets, SECBENCH.JS is realistic, provides executable
exploits, is two-sided, and has been manually vetted.

• Three concrete applications of the benchmark, which
reveal previously unknown vulnerabilities and insights for
future work.

• The entire benchmark is publicly available as open-
source, well-documented, and packaged conveniently in
a container image.1

II. METHODOLOGY

In this section, we first discuss our threat model (§II-A)
and then present our methodology for building the benchmark
suite: collecting known vulnerabilities (§II-C, §II-D), adapting
or newly developing proof-of-concept exploits (§II-E), and
collecting additional metadata (§II-F).

1https://github.com/cristianstaicu/SecBench.js

2

https://github.com/cristianstaicu/SecBench.js


TABLE II
NUMBER OF UNIQUE VULNERABILITIES FROM THE TOP TEN CLASSES

AVAILABLE IN THE VULNERABILITY DATABASES.

Type of vulnerability Nb. vulnerabilities

Malicious package 730
Cross-site scripting (XSS) 426
Path traversal 407
Prototype pollution 327
Regular expression denial of service (ReDoS) 264
Command injection 238
Code injection 215
Denial of service (DoS) 114
Use after free 60
Information exposure 28

A. Threat Model

We focus on vulnerabilities, i.e., security defects of a
package that be exploited by an attacker. The reason for
this focus is that vulnerabilities account for almost 60% of
the problems reported in the considered advisory databases,
making them a highly relevant target for a security benchmark.
In contrast, we here do not consider malicious packages, i.e.,
packages that are intentionally developed and distributed with
security risks.

Most of the considered entries in our suite are libraries.
By construction, these software components have incomplete
threat models: Since it is not clear where the library’s inputs
come from, it is common to assume the worst-case scenario,
i.e., that inputs are attacker-controlled. Our suite does not make
any judgment on the feasibility of this threat model, but instead
relies on the assessment of practitioners about the risk posed
by such vulnerabilities.

We focus on packages that can be executed on the server-
side, ignoring typical client-side issues, e.g., cross-site script-
ing and open redirects. Vulnerabilities in server-side JavaScript
are particularly interesting because, unlike on the client side,
the code does not run in a sandboxed environment. Instead, a
vulnerable package, once exploited, can have serious effects
on the broader environment, including reading environment
variables, writing files, spawning new processes, and setting
up network connections.

B. Types of Vulnerabilities

To be representative of the threats that practitioners are most
interested in, we focus on the five most common classes of
vulnerabilities in the advisory databases we consider. Table II
shows the number of unique vulnerabilities for the top ten
classes available in the vulnerability databases. Given our
focus on benign, server-side JavaScript vulnerabilities, we
ignore the first two classes and select the following five
classes for inclusion into the benchmark. These classes are
also targeted by recent work in this domain: command and
code injection [1], [2], [17], [20], [26], [26], ReDoS [3], [4],
[21], [22], [43], [44], prototype pollution [5], [17], and path
traversal [8], [17].

The following briefly describes the five classes of vulnera-
bilities:

• Prototype pollution: This vulnerability enables an at-
tacker to add or manipulate arbitrary properties to global
object prototypes, which enables the attacker to tamper
with the application logic. Attacks that exploit prototype
pollution vulnerabilities often also make use of other
vulnerabilities.

• ReDos: Regular expression denial of service (ReDoS) is
a class of vulnerabilities that exploits poorly constructed
regular expressions or faulty regular expression imple-
mentations. Doing so allows the attacker to make pattern
matching a string against the regular expression take
unusually long, and hence, lead to a denial of service.

• Code injection: This vulnerability allows an attacker
to inject malicious code into an application, which will
then be interpreted or executed by the application. This
vulnerability typically stems from improper validation of
input data.

• Command injection: Similar to the above, this vulnera-
bility allows the attacker to execute arbitrary commands
on the host operating system. Unlike code injection, it
allows the attacker to leverage existing code to execute
unexpected commands, usually within the context of a
shell.

• Path traversal: Path traversal vulnerabilities (also known
as directory traversal vulnerability) allow the attacker to
access, create, write, or modify arbitrary files outside
of an intended location in the host’s file system. This
vulnerability usually stems from insufficient validation or
sanitization of user-supplied file names or paths.

C. Source of Vulnerabilities

We gather vulnerabilities from three different sources: Snyk,
GitHub Advisories (previously called Npm Advisories), and
Huntr.dev. These sources include thousands of vulnerabilities,
often accompanied by an exploit, are popular among develop-
ers, and are extensively used in other work [10], [17], [26],
[45]. For each considered source, we scrape its web interface
to collect the number of vulnerabilities and their types, which
provides the basis for further analysis.

D. Filtering of Candidate Vulnerabilities

We include in our suite only those vulnerabilities for which
we can present an input that triggers a security-relevant action,
as described below. Thus, we exclude vulnerabilities in pack-
ages (a) that we cannot install or that were deleted, (b) that we
cannot reproduce, or (c) that are incompatible with our setup,
e.g., operating system. When the public vulnerability report
contains a proof-of-concept exploit, we adapt this exploit and
integrate it into SECBENCH.JS. Otherwise, we try to create
an exploit ourselves, allocating a budget of one hour per
vulnerability to this task.

As part of this filtering process, we manually inspect and
validate each vulnerability, keeping only vulnerability that we
successfully confirm to exist. This validation was performed
mostly by three researchers over a period of eight months.
Researcher 1 is an undergraduate student with solid JavaScript

3



experience who curated the benchmark. Researcher 2, a
second-year graduate student mainly working on analyzing
the security of Node.js and JavaScript, manually tested and
verified every PoC. Lastly, Researcher 3 is an expert researcher
with extensive experience in the area, who reviewed the code
of each commit and cross-checked data consistency.

E. Executable Exploits

Each exploit in SECBENCH.JS contains five parts: (i) a setup
phase in which the target package is imported and initialized,
(ii) a sanity check that the security-relevant post-condition is
not met before the actual payload, (iii) an API call that delivers
the problematic input to the vulnerable API, (iv) a check that
the post-condition is met, and (v) a cleanup phase in which
the side-effects of the exploit are reverted.

For example, the security-relevant action for injection vul-
nerabilities is to create a file on disk. As a sanity check,
we verify that this file is not yet present on the disk at the
beginning of the exploit. After the payload’s execution, we
assert the presence of the file. Thus, the payload needs to inject
code that loads the file system API and creates the target file.

F. Patches of Vulnerabilities

Including the information about the patched version and the
fixing commit in our suite is important for enabling studies of
deployed fixes, as discussed in Section IV-B. Moreover, having
fixed versions of the vulnerable code is essential for judging
the precision of static vulnerability detection tools. Such tools
should report a problem in the vulnerable version, but not in
the fixed version.

We follow two strategies for extracting fixes of vulnerabil-
ities. First, we scrape the considered sources to extract this
information. If an advisory refers to a fix for the vulnerability,
e.g., in the form of a pull request that fixes the vulnerability,
then we include the fix into SECBENCH.JS. Second, because
some vulnerabilities are fixed, but the fix is not listed in the
corresponding advisory, we search for a fix in case the first
strategy is not successful. To this end, we run our exploit on
the latest version of the package and check if it still works. In
case the exploit fails, we manually analyze the failing exploit
to understand if a fix was deployed. If a fix is present, we
localize the code location of the fix and then analyze the
repository’s history to identify the fixing commit.

III. THE SECBENCH.JS BENCHMARK SUITE

This section describes the details of SECBENCH.JS, includ-
ing what vulnerabilities it is composed of (§III-A), how the
executable exploits ensure successful exploitations (§III-B),
the implementation of the benchmark as a test suite (§III-C),
and how the benchmark facilitates deploying program analyses
that reason about vulnerabilities (§III-D).

A. Composition of the Benchmark

In total, SECBENCH.JS consists of 600 vulnerabilities, each
of which has an executable exploit. Table III how these
vulnerabilities are distributed across the five classes of vul-
nerabilities, and the number of their metadata entries. For

TABLE III
NUMBER OF EXPLOITS INCLUDED IN SECBENCH.JS, TOGETHER WITH THE

NUMBER OF METADATA ENTRIES, FOR EACH CONSIDERED
VULNERABILITY TYPE.

Type of vulnerability Nb. exploits Fixed version CVE information

Code injection 40 21 20
Command injection 101 41 90
Path traversal 169 19 80
Prototype pollution 192 126 158
ReDoS 98 78 59

Total 600 285 407

48% of the vulnerabilities, we provide information about
the fixed version and the fix commit. In particular, for nine
entries, this information was not included in the corresponding
security advisory, but we identified it using the second strategy
described in Section II-F. We provide CVE information for
67% of the exploits in our suite. The lack of metadata for
some entries reflects the limitations of the underlying data,
e.g., the fact that for some vulnerabilities, no CVE has been
assigned or no patch has been deployed.

384 of the exploits in SECBENCH.JS correspond to vulnera-
bilities reported both on Snyk and GitHub Security Advisories,
while 203 and 7 were exclusively reported on Snyk and
GitHub, respectively. For each vulnerability, our metadata
links to the corresponding advisories in these databases.

On average, each vulnerable package directly depends on
1.42 other packages, and is depended upon by 947.62 pack-
ages. This shows that the considered packages are relatively
influential and that there are important interactions with third-
party packages.

B. Ensuring Successful Exploitation

To ensure that each exploit in SECBENCH.JS successfully
uses the vulnerability to trigger an unforeseen, security-
relevant action, each of the exploits comes with an exploit
oracle to check this property. Similar to test oracles, these
oracles judge the outcome of an executable exploit via asser-
tions. Unlike regular test oracles, which typically check for
desirable behavior, passing the exploit oracle means that the
package is indeed vulnerable and that the exploit is successful
at abusing the vulnerability.

For most entries in SECBENCH.JS, we create exploits
based on existing information, i.e., either a proof-of-concept
(PoC) or a natural language description of a possible exploit
given in the vulnerability database. A significant amount of
work went into encoding this information in a uniform way,
adapting it to our framework, and adding exploit oracles. As
a measure to approximate this effort, we report the number
of exploit assertions, which are all manually created by us:
SECBENCH.JS has a total of 1,244 assertions, thus, an average
of 2.07 assertions per exploit. Additionally, for most exploits,
we have a meta assertion on the number of oracle checks that
must be performed during the execution. We found this to be
useful for ensuring that all the asynchronous tasks are correctly
executed.

4



An important observation is that exploit oracles and
security-relevant actions are specific to a given class of vulner-
abilities. For example, one can use a ReDoS vulnerability to
trigger a slow computation in the main thread, or a prototype
pollution to pollute the global scope. However, since these
undesired actions are very different in nature, it is only natural
that the oracles that assert their success are also different. The
following discusses in detail each type of exploit oracle used
by SECBENCH.JS.

• Code and command injections: The oracle checks the
existence of a custom-named file on the disk. For most
exploits, the security-relevant action uses the built-in fs
module (code injections) or the touch UNIX utility
(command injection) to create the file. At the beginning
of an exploit, the oracle checks that the file is not present
on the disk, and after the payload is executed, it asserts
its existence.

• Path traversal: SECBENCH.JS ships with a file called
flag.txt, which the path traversal vulnerabilities aim
to read. The oracle checks that the content served by the
vulnerable npm package is the same as the one in this file.
As the absolute path to this file varies from machine to
machine, SECBENCH.JS dynamically adjusts the payload
to point to the indicated file.

• Prototype pollution: The oracle checks the existence of a
variable called polluted in the global scope. At the be-
ginning of an exploit, the oracle checks that such a value
is not present, and once the payload has been executed,
it asserts its existence. We note that this is a very strict
oracle and that there are prototype pollution attack vectors
that do not allow such an action to be performed, e.g.,
because they only allow for adding properties to specific
built-in APIs, such as Function.prototype. Since
the security impact of such pollutions is limited, we focus
on a powerful oracle that checks for the most serious
version of these attacks.

• ReDoS: The oracle checks that the target payload takes
more than a configurable duration d to execute, with
d = 1 second as the default. While this simple oracle
may, in principle, lead to both false negatives and false
positives, we minimize their likelihood by (i) dimension-
ing our exploits so that in our setup the computation takes
significantly longer than d, and (ii) the duration d is long
enough so that benign computations rarely trigger such
long operations.

C. Implementation
At a high level, SECBENCH.JS is a set of unit tests, where

each successful exploit is considered a passing test. We use the
Jest2 testing framework, the most popular JavaScript testing
framework3. SECBENCH.JS relies on package managers, such
as npm or yarn, to distribute the vulnerable package versions.
Each vulnerability is contained in a separate folder contain-
ing a metadata file with information about the vulnerable

2https://jestjs.io/
3https://2020.stateofjs.com/en-US/technologies/testing/

1 {
2 "id": "CVE-2019-10744",
3 "dependencies": {
4 "lodash":"4.17.10"
5 },
6 "links": {
7 "source1":"SNYK-JS-LODASH-450202",
8 "source2":"GHSA-jf85-cpcp-j695"
9 },

10 "fixedVersion":"4.17.12",
11 "fixCommit":"

c3fd203b3be87a8177f7f00824033c95f981f984",
12 "sinkLocation": "lodash.js:2573:21"
13 }

Fig. 1. Metadata corresponding to the entry for lodash’s vulnerability CVE-
2019-10744. Links are abbreviated for brevity.

1 test("prototype pollution in lodash", () => {
2 // setup
3 const mergeF = require("lodash").defaultsDeep;
4 const payload = ’{"constructor": {"prototype":

{"polluted": "yes"}}}’;
5 // sanity check
6 expect({}.polluted).toBe(undefined);
7 // exploit
8 mergeF({}, JSON.parse(payload));
9 // oracle check

10 expect({}.polluted).toBe("yes");
11 // cleanup
12 delete Object.prototype.polluted;
13 });

Fig. 2. Exploit for lodash’s vulnerability CVE-2019-10744.

version, the fix, the exact location, and external resources,
as well as a JavaScript test file with the exploit and the
oracle checks. The folder-based structure allows for multiple
vulnerable versions of the same package. For example, for
lodash, SECBENCH.JS includes four different prototype
pollution vulnerabilities and one ReDoS vulnerability.

In Figure 1, we present the metadata entry for the vulnera-
bility CVE-2019-10744, an example entry in our suite. Clients
of the suite can install the vulnerable version 4.17.10, e.g.,
by running npm install in the folder containing this file.
Figure 2 shows the test that implements the exploit. It first sets
up the test by importing the vulnerable package and initializing
relevant constants, and then asserts that the target property is
not inadvertently present in the global scope. After that, the
test triggers the payload by passing it to the vulnerable module.
Finally, the test assesses the presence of the target property and
hence, the exploit’s success. Some tests in SECBENCH.JS have
more complex setup and teardown phases. For example, for
path traversal vulnerabilities, we often need to start the target
package in a separate process to act as a web server, perform
an HTTP request, and finally, stop the server. Nonetheless,
the high-level structure of all our tests is similar to the one
discussed above.

To simplify batch installation, SECBENCH.JS organizes its
metadata and entries in a hierarchical structure. At first, we
aggregate the individual vulnerability folders by vulnerabil-

5

https://jestjs.io/
https://2020.stateofjs.com/en-US/technologies/testing/
https://nvd.nist.gov/vuln/detail/cve-2019-10744
https://security.snyk.io/vuln/SNYK-JS-LODASH-450202
https://github.com/advisories/GHSA-jf85-cpcp-j695
https://github.com/sailshq/lodash/pull/1/commits/c3fd203b3be87a8177f7f00824033c95f981f984


ity class, offering an aggregated package.json file that
refers to all the individual vulnerabilities. For example, all
ReDoS vulnerabilities are comprised in the redos folder,
containing a package.json with 98 internal dependencies.
Running the package manager in that folder will download
all the 98 vulnerabilities of that class, together with their
dependencies. Similarly, SECBENCH.JS also allows for batch
installing all the 600 vulnerable packages, by providing a
main package.json that refers to the individual ones
corresponding to the five vulnerability classes considered
in the benchmark. On a standard laptop, it takes about
twelve minutes to run npm install in the main folder of
SECBENCH.JS, i.e., installing all the 600 vulnerable packages,
with their exploits.

Once installed, a user can run all tests sequentially or
in parallel. By default, jest runs all the tests in parallel,
achieving the following test execution times on a standard
laptop: 57s, 13s, 518s, 12s, and 156s, for code injection,
command injection, path traversal, prototype pollution, and
ReDoS, respectively. The two slowest classes are ReDoS,
for which the payloads trigger a significant slowdown in the
target packages, and path traversal, for which we run the tests
sequentially because multiple of them try to serve requests on
the same HTTP port.

D. Deploying Analysis Code

An important use case we envision for our suite is the
development of runtime analyses to detect and defend against
exploits. To this end, one needs to deploy analysis code that
runs along with our exploits. We outline below two ways
in which analysis code can be injected. First, due to the
integration between Jest and Babel4, an off-the-shelf transpiler
for JavaScript, one can deploy runtime instrumentation using
Babel. Second, a widely-used dynamic analysis technique
for scripting languages is monkey patching, i.e., augmenting
the semantics of built-in APIs to include analysis code. By
leveraging Jest’s setup phase, one can define custom analysis
files that are executed before each test and can thus alter the
test’s global scope. We successfully use this analysis technique
to extract the sink location for the vulnerabilities in our suite
(§IV-C).

IV. APPLICATIONS OF SECBENCH.JS

The availability of SECBENCH.JS enables studying prop-
erties of vulnerabilities via dynamic analysis at a previously
impossible scale. The following shows three examples of such
studies. We first study how many versions of a given package
are affected by our exploits, and whether this information
matches the version constraints provided in the advisory
(Section IV-A). Then, we show that applying simple muta-
tions to our exploits helps identify zero-day vulnerabilities
in insufficiently patched packages (Section IV-B). Finally, we
present a dynamic analysis to precisely identify the location
where an attacker-provided value gets passed to a sensitive
API (Section IV-C).

4https://babeljs.io/

A. Finding Mislabeled Vulnerable Versions
Vulnerability reports often indicate the versions of a package

that are affected by a vulnerability, which is useful for guiding
clients of the package to upgrade their dependencies. Since
these reports are manually curated, they may be inaccurate,
e.g., due to regressions and flawed fixes. The exploits provided
in SECBENCH.JS allow for automatically checking which
versions of a package can be successfully exploited. The
following shows how cross-checking this information against
the version ranges reported to be vulnerable helps to find
mislabeled vulnerable versions.

a) Experimental Setup: For every package in
SECBENCH.JS, we iteratively update it to every one of
its versions and attempt to run the exploit against that
particular version, storing the test outcome for each attempt.
Because running an exploit on all versions of a package
is non-trivial, this setup yields an underapproximation of
versions that are affected by an exploit. For example, legacy
versions of a package may not be compatible with our
setup, or there may be breaking changes of the used APIs,
along the history of the project. Finally, we check if all
the vulnerable versions, as identified with SECBENCH.JS,
are flagged accordingly by the corresponding vulnerability
database.

b) Results: Most of the considered packages have less
than 20 versions, while there are a handful of packages with
thousand of versions. Figure 3 shows how many of these
versions are found to be vulnerable with the exploits in
SECBENCH.JS. The mean number of vulnerable versions per
package is 19.1, with 50% of the packages having ≤ 5 vulner-
able versions, while @firebase/util has a maximum of
1,487 vulnerable versions. Overall, the figure shows that most
vulnerabilities affect multiple versions, sometimes even more
than 100.

For each package in SECBENCH.JS, we check if there are
inconsistencies between the vulnerable versions we detected
and the original advisory. We manually check every mismatch
and confirm 168 vulnerable versions in 19 packages that are
incorrectly flagged as not vulnerable by Snyk. We are in
the process of reporting these inconsistencies with associated
examples to Snyk.

c) Examples: In Figure 4, we show examples of mis-
matches between SECBENCH.JS and the Snyk database. As
mentioned earlier, our analysis might produce false negatives;
thus, we only focus on cases where the analysis flagged
a version as vulnerable, but the public vulnerability report
claims the version to not suffer from the vulnerability. We
discover three classes of mismatches. First, there are cases
like changeset or underscore.string, where the con-
straint provided in the security advisory fails to capture legacy
versions, released before the actual interval specified by the
constraint. Second, there are cases like ts-dot-prop when
the constraint fails to capture versions after the indicated
interval. Such errors might give users a false sense of security,
since audit tools like snyk-cli would flag these versions
as safe to use. Nonetheless, the affected releases might still

6

https://babeljs.io/


1 2 3 4 5 6 7 8 9 10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 >100
Number of vulnerable versions

0

25

50

75

100
N

um
be

r o
f p

ac
ka

ge
s

Fig. 3. Distribution of the number of vulnerable versions of a package that are exploitable with SECBENCH.JS.

Time

shvl

changeset

ts-dot-
prop

jspdf

underscore.
string

SecBench.js
Snyk

SecBench.js
Snyk

SecBench.js
Snyk

SecBench.js
Snyk

SecBench.js
Snyk

Vulnerable Not vulnerable

Fig. 4. Examples of disagreements between our dynamic results and the Snyk
database. Each box represents a version of the package. For each package,
the lower line shows the assessment in SECBENCH.JS, while the upper line
shows the available vulnerable version information in the Snyk database. The
two lines are synchronized in the sense that two boxes corresponding to the
same x-point depict the same package version. The pink overlay points to
versions that are falsely labeled as non-vulnerable in the Snyk database.

be considered as legacy. Finally, for two packages, the latest
version of the package is incorrectly flagged as not vulnerable,
hence, representing zero-day vulnerabilities. Since developers
are usually encouraged to migrate whenever possible to the
latest version, having these versions incorrectly flagged as not
vulnerable anymore is a severe problem and gives a false sense
of security.

For example, the initial security advisory for jspdf iden-
tifies the following regular expression vulnerable to ReDoS,
in version 2.3.0 and earlier:

/ˆdata:(\w*\/\w*);*(charset=[\w=-]*)*;*$/

The regular expression consists of a wild card in the second
capturing group (charset=[/\w=-]*)* which triggers the so-
called “catastrophic backtracking”. Since there was no exploit
available for this vulnerability, we developed our own by
studying the original vulnerable expression and found the
following input to trigger the problem:

data:/charset=charset=charset=charset=charset=
charset=charset=charset=charset=charset=
charset=charset=charset=!

The advisory indicates that the problem was fixed in a later
version and links to a commit that refines the regular expres-
sion into the following:

/ˆdata:(\w*\/\w*);*(charset=(?!charset=)[\w=-]*)
*;*$/

The look-ahead is supposedly preventing the catastrophic
backtracking. However, because the patch uses a negative
look-ahead to match the character literals charset =, it is still
possible to perform a ReDoS attack, e.g., using the following
input:

data:image/jpeg;charset=xcharset=xcharset=xcharset
=xcharset=xcharset=xcharset=xcharset=xcharset=
xcharset=xcharset=xcharset=xcharset=xcharset=
xcharset=xcharset=xcharset=xcharset=xcharset=
xcharset=xcharset=xcharset=xcharset=xcharset=
xcharset=x!base64

As another interesting example, consider the case of the
mithril package shown in Figure 5. This package has three
major releases, all of which were concurrently maintained
for some time. Due to this parallel maintenance, the natural
ordering of versions does not match with the publishing order.
By natural order, we mean that a version n.0.0 gets published
before (n+1).0.0 or n.1.0, and the later version would be
considered the latest version. But in the case of mithril,
version 1.1.7 was published on September 23, 2019, i.e., after
version 2.0.4, which was published on August 18, 2019, and
marked as latest on npm.

These cases of parallel versioning make it difficult to cor-
rectly specify the constraint that indicates vulnerable versions.
To specify the vulnerable versions for mithril, the Snyk
database uses this complex constraint:

>= 1.0.0 < 1.1.7, >= 2.0.0 < 2.0.3

However, since versions like 1.1.7 are released later than 2.0.3,
it is not trivial for developers to determine whether a given
version they are using is vulnerable or not. We identify multi-
ple release candidate versions, e.g., 2.0.0-rc.0 that are actually
vulnerable, but that are not captured by the constrained above.
As a result of such mislabeling, developers may get a false
sense of security and accidentally use vulnerable versions.

d) Implications: The findings in this section show that
the ability to cross-check manually specified version ranges
against the executable exploits in SECBENCH.JS is useful to

7



Fig. 5. Example of a disagreement between our dynamic results and the Snyk database in the mithril package.

detect mislabeled versions. We also find that accurately spec-
ifying which versions are affected by a vulnerability is non-
trivial, e.g., due to multiple major versions being maintained
in parallel.

B. Finding Flawed Fixes

When addressing a vulnerability, developers may sometimes
overfit to a proof-of-concept provided in the original advisory.
As a result, the published fix may not fully address the
problem, leaving some attack vectors open to be exploited. For
example, for a prototype pollution vulnerability, one can pol-
lute the global object using both the paths obj.__proto__
and obj.constructor.prototype. Hence, a fix that
considers only one of these paths would be flawed.

a) Experimental Setup: To detect flawed fixes based on
SECBENCH.JS, we design three simple mutations, shown in
the first column of Table IV. The last two capture the case
described earlier, while the first mutation corresponds to a
type confusion problem5. We then update all the vulnerable
packages in SECBENCH.JS to their latest versions and only
consider those packages for which the original exploit does
not work, i.e., they are supposedly fixed. We then apply each
of the three mutations above to the exploit in SECBENCH.JS
and rerun the modified exploit. If the test succeeds, we have
identified a flawed fix for the corresponding package.

b) Results: In total, we find thirteen, four, and one zero-
day vulnerabilities for the three mutations, respectively. We
reported all these issues to the maintainers and, until the time
of writing, we got assigned twelve new CVEs for our findings,
as shown in Table IV. For two cases, there was a concurrent
disclosure pending for the same issue, and the rest are still in
the disclosure process.

c) Examples: Let us consider the case of convict,
a popular package from Mozilla for managing configuration
files. In response to the original vulnerability report for this
package, the authors deployed a fix6 in the set method, by
including the if statement below:

1 const path = k.split(’.’)
2 const childKey = path.pop()
3 const pKey = path.join(’.’)
4 if (!(pKey == ’__proto__’ || pKey == ’constructor’

|| pKey == ’prototype’)) {
5 const parent = walk(this._instance, pKey, true)

5https://snyk.io/blog/remediate-javascript-type-confusion-bypassed-input-
validation

6https://github.com/mozilla/node-convict/commit/
688c46afe099b44512665dee6263eacd9f4f71a8

6 parent[childKey] = v
7 }

The check prevents writing paths like
"__proto__.x", but not composed ones like
"constructor.prototype.x", where pKey is
assigned "constructor.prototype". In response to
our report, the maintainers deployed a more sophisticated fix
that also considers this additional attack vector.

d) Implications: An alternative to the experiments de-
scribed in this section would be to manually analyze all the
deployed patches for the 192 prototype pollutions vulnera-
bilities in our suite. While this is doable, the effort would
be considerably higher than writing the simple mutations in
Table III and running the suite three times. Moreover, we can
run such experiments on a regular basis, for all future versions
of the target packages, to detect possible regressions. Thus,
we conclude that an executable vulnerability database, such
as SECBENCH.JS, is useful for validating deployed fixes and
for identifying regressions.

C. Localizing Sink Calls

Most vulnerabilities can be described as a taint analysis-
style flow of data from a source to a sink. A sink
here is a built-in API that is used to deliver the pay-
load. For example, a typical sink for command injection
is child_process.exec(). Having precise information
about the sink location is useful to better understand a vul-
nerability. Moreover, knowing the sink location provides a
ground truth for evaluating taint-style analyses that report
potential vulnerabilities. The following shows how to use
SECBENCH.JS to localize sink calls via dynamic analysis.

a) Experimental Setup: To extract sink locations, we use
a simple yet effective dynamic analysis. We run each exploit
in a prepared environment in which relevant sink APIs are
hooked. For example, for prototype pollution we add a custom
setter on the property polluted in Object.prototype,
i.e., the property that our payloads are trying to set. Each time
an exploit sets that property, our analysis code is triggered, and
we inspect the stack trace to extract the location that triggers
the property set. Similarly, we hook child_process APIs
for command injection, fs for path traversal, regular expres-
sion matching for ReDoS, and eval and Function for code
injection. In case of multiple sink calls, we only extract the
first sink location.

8

https://snyk.io/blog/remediate-javascript-type-confusion-bypassed-input-validation
https://snyk.io/blog/remediate-javascript-type-confusion-bypassed-input-validation
https://github.com/mozilla/node-convict/commit/688c46afe099b44512665dee6263eacd9f4f71a8
https://github.com/mozilla/node-convict/commit/688c46afe099b44512665dee6263eacd9f4f71a8


TABLE IV
MUTATIONS FOR IDENTIFYING PROBLEMATIC FIXES, AND THE ZERO-DAY VULNERABILITIES IDENTIFIED BY EACH MUTATION.

Mutation Security advisories

"__proto__" → ["__proto__"] CVE-2021-23518, CVE-2021-23760, CVE-2021-23507
CVE-2021-23497, CVE-2021-23460, CVE-2021-23558
CVE-2022-25354, CVE-2022-25296, CVE-2022-25352

"__proto__" → "constructor.prototype" CVE-2022-22143, CVE-2022-24279
"__proto__": {...} → "constructor": {"prototype": {...}} CVE-2021-23470

b) Results: Applying the dynamic analysis to all vul-
nerabilities in SECBENCH.JS finds a sink location for 567 of
600 exploits (94.5%). The remaining cases are missed due to
complex behavior calls not captured by our simple dynamic
analysis. For example, for path traversal exploits, the main
process creates a new detached process, where the actual sink
calls happen. However, due to the newly created process, the
dynamic analysis fails to trace the sink calls in a few cases.

c) Implications: Having a large set of precisely identified
sink locations provides a basis for evaluating existing and
future taint-style analyses. Such analyses, both static and
dynamic, typically warn users about unexpected flows from an
API entry point to a sink location. The sink locations obtained
using SECBENCH.JS will serve as a ground truth for evaluating
the results of taint-style analyses.

V. DISCUSSION

This section discusses the application of SECBENCH.JS in
practice, its relationship with other language ecosystems, and
some of its key limitations.

a) Applying SECBENCH.JS: We see several opportuni-
ties for applying SECBENCH.JS in future security research.
First, SECBENCH.JS is well-suited for evaluating mitigation
techniques: a plethora of security systems [1], [21], [25], [26]
aims to mitigate or eliminate unintended behaviors during the
execution of a program. SECBENCH.JS can be used to empiri-
cally characterize the success of these systems, including both
mechanisms and policies safeguarding program execution.
SECBENCH.JS’s ability to trigger vulnerabilities and confirm
the anticipated side-effects via runtime oracles is critical here,
including the decision to offer automation and minimize other
side-effects that could interfere with mitigation techniques.

Second, SECBENCH.JS can be used to evaluate both static
and dynamic vulnerability detection techniques, i.e., whether a
tool or a system designed to infer legitimate behavior or detect
certain classes of attacks indeed succeeds in such inference or
detection. The existence of both vulnerable and non-vulnerable
versions of the code in SECBENCH.JS is important for this
goal, as they can be used to characterize precision and recall.
Indeed, recent work already uses SECBENCH.JS to validate a
novel kind of taint analysis [46].

Finally, SECBENCH.JS can also be used for in-depth studies
and analyses of real-world vulnerabilities and the features that
enable such vulnerabilities in practice, e.g., code and object
complexity or source-target distance in the object graph.

b) Relation to other languages and ecosystems: The
choice of a particular language and runtime environment—
server-side JavaScript and Node.js—necessarily affects the
classes of threats that are part of a benchmark suite. Server-
side JavaScript means that a vulnerable component does not
run in the sandboxed environment of a web browser. Once
exploited, a vulnerable package can thus have serious effects
on the broader environment in which the program is executing,
including reading environment variables, writing files, spawn-
ing new processes, and setting up network connections. Many
of these threat classes are common in other languages and
ecosystems, such as Python (PyPI), Ruby (Rubygems), and
Java (Maven Central).

A few threats that are part of SECBENCH.JS are not
commonly found in other environments and are due to design
decisions related to the semantics and implementation of
JavaScript. For example, prototype pollution attacks are due to
the combination of mutable intrinsics and runtime resolution
available in the JavaScript language. As another example,
ReDoS attacks are due to cooperative task scheduling present
in the JavaScript runtime environment. These behaviors exist
in other environments (mutable intrinsics in Smalltalk; coop-
erative scheduling in Lua) but have not received the attention
they have received in JavaScript.

At the same time, some other classes of vulnerabilities that
are possible or even common in other environments are not
part of SECBENCH.JS. One example is vulnerabilities stem-
ming from the lack of memory safety, common in components
developed in memory-unsafe languages, such as C and C++.
Another example is cross-site scripting attacks, common in
components targeting front-end web applications.

VI. THREATS TO VALIDITY

SECBENCH.JS is a vetted benchmark suite, i.e., all vul-
nerabilities have been manually inspected to validate their
existence and that their associated exploits and metadata are
proper. Despite our best efforts, the results of this manual
inspection may nevertheless be subject to occasional errors.
The validity of any conclusions draw based on SECBENCH.JS
are limited to the packages, vulnerabilities, exploits, and
classes of threats included in the suite. In particular, this means
that using the suite does not allow to generalize results to
other programming languages or environments. Given the im-
portance of server-side JavaScript, especially from a security
point of view, we consider SECBENCH.JS to nevertheless offer
a valuable contribution.

9



SECBENCH.JS is intended for research and thus provides
infrastructure to automate, instrument, and validate the execu-
tion of the exploits included in SECBENCH.JS. There is a small
chance that this infrastructure might accidentally interfere with
security policies or mechanisms associated with the artifact
being evaluated. For example, SECBENCH.JS’s creation of
new processes might interfere with systems that detect or
mitigate process-related limits; and its execution in a dedicated
container environment might interfere with policies related
to limitation and prioritization of operating-system resources.
Some of these limitations would be present in any evaluation
infrastructure, i.e., even with ad-hoc benchmarks, i.e., while
others can be ameliorated through careful engineering of the
artifact under evaluation.

VII. RELATED WORK

A. Vulnerability datasets

There are different kinds of vulnerability datasets. One of
them is benchmarks of vulnerable programs aimed to be used
for evaluating static analyzers or fuzzers [33], [34], [38]. The
most closely related such benchmark is Magma [38], which
is also built from real-world vulnerabilities and comes with
inputs to exploit them, but targets C instead of JavaScript.
Moreover, their exploitation is limited to a crash, while our
testing oracle assert the success of as security-relevant action.
The AEG exploit generation system [47] aims at finding
vulnerabilities and generating exploits automatically.

Another class of related work consists of large-scale datasets
extracted in an automated manner, e.g., from version histo-
ries [35], [36], [41], [48], intended as training data for machine
learning-based vulnerability detection. Due to their automated
creation, these datasets do not come with exploits and suffer
from some degree of noise (e.g., 53% true positives based on
manual inspection [48]).

Finally, a third kind of dataset offers manually validated
vulnerabilities and exploits for them [39], [42], similar to
SECBENCH.JS, but none of them targets JavaScript. Beyond
vulnerabilities, other benchmark suites [28], [49], [50] are
mainly designed to study a specific program area outside
software security. To the best our knowledge, we are the first to
construct a benchmark of executable, real-world vulnerabilities
in JavaScript code.

B. Bug benchmarks

Looking beyond the security domain, there are vari-
ous benchmarks of general bugs, such as Defects4J [31],
Bugs.jar [51], BugSwarm [40] for Java, BugsJS for
JavaScript [52], and a set of JavaScript performance bugs [53].
Other benchmarks focus on concurrency bugs [54], [55], high-
impact bugs [56], and non-functional bugs [57]. While many
of these benchmarks also provide inputs to trigger the bugs,
they do not focus on vulnerabilities.

C. npm and other package ecosystems

The prevalence of vulnerabilities in npm and other package
ecosystems has motivated various studies and techniques to

understand and identify ecosystem-level security issues. Zim-
mermann et al. [10] study ecosystem-level security threats in
npm. Others study the impact of vulnerabilities on package de-
pendency network [45], the phenomenon of “trivial” packages
in npm [14], or the impact of ReDoS vulnerabilities [4]. Sup-
ply chain attacks are another problem of specific interest [9],
[18]. Pashchenko et al. [13] report on an interview-based study
to understand the (lack of) dependency management. All the
above highlights the importance of security threats in large-
scale package ecosystems. SECBENCH.JS will help address
these threats by providing a benchmark for evaluating future
detection and mitigation tools.

D. JavaScript security

There are various techniques for detecting JavaScript vulner-
abilities and for mitigating their exploitation, of which we dis-
cuss a representative sample. Many techniques detect a partic-
ular kind of vulnerability, such as injection vulnerabilities [1],
[2], hidden property attacks [58], ReDoS vulnerabilities [3],
sandbox breakout [59] and prototype polution [5], [6]. Others
provide more general detection techniques, e.g., in the form
of static extraction of taint specifications [60], dynamic taint
analysis [24], and graph-based vulnerability detection [17].
There are mitigations against ReDoS [21]–[23], in the form
of compartementalization [25], privilege reduction [26], and
debloating of packages [12]. Beyond the JavaScript code
itself, security-relevant bugs in the runtime implementation
are another concern [15], [61]. We envision SECBENCH.JS to
help compare and improve techniques that detect JavaScript
vulnerabilities and that mitigate their exploitation.

VIII. CONCLUSION

Computer science research and development depend cru-
cially on benchmarks that provide a common foundation
for evaluating techniques, systems, and solutions. Security
research for server-side JavaScript currently lacks a compre-
hensive set of real-world executable benchmarks, collected and
analyzed systematically. As a result, researchers are forced
to evaluate their contributions ad hoc, hampering the direct
comparison among different techniques—a problem we have
repeatedly faced ourselves and heard from others when de-
veloping systems targeting defensive software security. This
paper makes a first step towards addressing this problem by
introducing SECBENCH.JS, a benchmark suite of vulnerabil-
ities and executable exploits for server-side JavaScript. The
benchmark comes as a fully automated package that offers
four desirable properties:

• Realistic: SECBENCH.JS includes the original versions of
600 vulnerable npm packages, which were reported and
confirmed by the community. These packages are used by
thousands of real-world projects and are included without
any modification to the benchmark.

• Executable: All 600 exploits presented in SECBENCH.JS
come with an executable proof of concept that exercises
the vulnerability. All the proofs of concept validate that
the exploit is successful with an appropriate oracle.

10



• Two-sided: 48% of the exploits in SECBENCH.JS include
not only the vulnerable but also a fixed version of the
code, which can be used to study mitigation and bug-
fixing techniques. For the remaining vulnerabilities, there
was no fix available at the time of creating the benchmark.

• Vetted: The authors of this paper manually analyzed and
cross-checked each entry in the suite.

We perform several experiments to show the usefulness of
the suite: identify flawed fixes and inaccuracies in the se-
curity advisories, extract vulnerability locations, and identify
deployed patches. As a result of these experiments, we uncover
20 zero-day vulnerabilities, for which we were assigned 12
CVEs. We believe that these initial results show the potential
of executable vulnerability databases like SECBENCH.JS, and
we hope that the community will join in the effort of extending
and maintaining this benchmark suite.

DATA AVAILABILITY

The benchmark suite, including all associated code and data,
is available as open-source at:

https://github.com/cristianstaicu/SecBench.js

ACKNOWLEDGEMENTS

This research was supported by the European Research
Council (ERC, grant agreement 851895), by the German
Research Foundation within the ConcSys and DeMoCo
projects, and by DARPA contracts HR00112020013 and
HR001120C0191. This work was conducted in the scope of a
dissertation at the Saarbrücken Graduate School of Computer
Science. We thank the anonymous reviewers for their valu-
able feedback and Snyk for assisting us with disclosing the
vulnerabilities in Section IV-B.

REFERENCES

[1] C.-A. Staicu, M. Pradel, and B. Livshits, “SYNODE: understanding and
automatically preventing injection attacks on NODE.JS,” in Network and
Distributed System Security Symposium (NDSS), 2018.

[2] F. Gauthier, B. Hassanshahi, and A. Jordan, “AFFOGATO: runtime
detection of injection attacks for node.js,” in International Symposium
on Software Testing and Analysis (ISSTA), 2018.

[3] C.-A. Staicu and M. Pradel, “Freezing the web: A study of redos
vulnerabilities in javascript-based web servers,” in USENIX Security
Symposium, 2018.

[4] J. C. Davis, C. A. Coghlan, F. Servant, and D. Lee, “The impact of
regular expression denial of service (ReDoS) in practice: An empirical
study at the ecosystem scale,” in Joint Meeting on Foundations of
Software Engineering (ESEC/FSE), 2018.

[5] S. Li, M. Kang, J. Hou, and Y. Cao, “Detecting Node.js prototype
pollution vulnerabilities via object lookup analysis,” in Joint Meeting
on Foundations of Software Engineering (ESEC/FSE), 2021.

[6] M. Shcherbakov, M. Balliu, and C.-A. Staicu, “Silent spring: Prototype
pollution leads to remote code execution in Node.js,” in USENIX
Security Symposium, 2023.

[7] F. Xiao, J. Huang, Y. Xiong, G. Yang, H. Hu, G. Gu, and W. Lee,
“Abusing hidden properties to attack the Node.js ecosystem,” in USENIX
Security Symposium, 2021.

[8] L. Gong, “Dynamic analysis for JavaScript code,” Ph.D. dissertation,
University of California, Berkeley, 2018.

[9] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltaformaggio, and
W. Lee, “Towards measuring supply chain attacks on package managers
for interpreted languages,” in Network and Distributed System Security
Symposium (NDSS), 2021.

[10] M. Zimmermann, C. Staicu, C. Tenny, and M. Pradel, “Small world
with high risks: A study of security threats in the npm ecosystem,” in
USENIX Security Symposium, 2019.

[11] M. Taylor, R. K. Vaidya, D. Davidson, L. D. Carli, and V. Rastogi,
“Defending against package typosquatting,” in Network and Distributed
System Security Symposium (NDSS), 2020.

[12] I. Koishybayev and A. Kapravelos, “Mininode: Reducing the attack sur-
face of Node.js applications,” in International Symposium on Research
in Attacks, Intrusions and Defenses (RAID), 2020.

[13] I. Pashchenko, D. L. Vu, and F. Massacci, “A qualitative study of
dependency management and its security implications,” in Conference
on Computer and Communications Security (CCS), 2020.

[14] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,
“Why do developers use trivial packages? An empirical case study
on npm,” in Joint Meeting on Foundations of Software Engineering
(ESEC/FSE), 2017.

[15] F. Brown, S. Narayan, R. S. Wahby, D. R. Engler, R. Jhala, and
D. Stefan, “Finding and preventing bugs in JavaScript bindings,” in
Symposium on Security and Privacy (S&P), 2017.

[16] C.-A. Staicu, S. Rahaman, Á. Kiss, and M. Backes, “Bilingual problems:
Studying the security risks incurred by native extensions in scripting
languages,” in USENIX Security Symposium, 2023.

[17] S. Li, M. Kang, J. Hou, and Y. Cao, “Mining Node.js vulnerabilities via
object dependence graph and query,” in USENIX Security Symposium,
2022.

[18] D. L. Vu, I. Pashchenko, F. Massacci, H. Plate, and A. Sabetta, “Towards
using source code repositories to identify software supply chain attacks,”
in Conference on Computer and Communications Security (CCS), 2020.

[19] B. B. Nielsen, M. T. Torp, and A. Møller, “Modular call graph con-
struction for security scanning of Node.js applications,” in International
Symposium on Software Testing and Analysis (ISSTA), 2021.

[20] B. B. Nielsen, B. Hassanshahi, and F. Gauthier, “Nodest: Feedback-
driven static analysis of Node.js applications,” in Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, (FSE), 2019.

[21] J. C. Davis, F. Servant, and D. Lee, “Using selective memoization to
defeat regular expression denial of service (ReDoS),” in Symposium on
Security and Privacy (S&P), 2021.

[22] J. C. Davis, “Rethinking regex engines to address ReDoS,” in Joint
Meeting on Foundations of Software Engineering (ESEC/FSE), 2019.

[23] J. C. Davis, E. R. Williamson, and D. Lee, “A sense of time for
JavaScript and Node.js: First-class timeouts as a cure for event handler
poisoning,” in USENIX Security Symposium, 2018.

[24] R. Karim, F. Tip, A. Sochurkova, and K. Sen, “Platform-independent
dynamic taint analysis for JavaScript,” IEEE Transactions on Software
Engineering, 2018.

[25] N. Vasilakis, B. Karel, N. Roessler, N. Dautenhahn, A. DeHon, and J. M.
Smith, “Breakapp: Automated, flexible application compartmentaliza-
tion,” in Network and Distributed System Security Symposium, (NDSS),
2018.

[26] N. Vasilakis, C.-A. Staicu, G. Ntousakis, K. Kallas, B. Karel, A. DeHon,
and M. Pradel, “Preventing dynamic library compromise on Node.js
via RWX-based privilege reduction,” in Conference on Computer and
Communications Security (CCS), 2021.

[27] M. Pöss and C. Floyd, “New TPC benchmarks for decision support and
web commerce,” SIGMOD Rec., 2000.

[28] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-
mark suite: characterization and architectural implications,” in Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), 2008.

[29] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The german traffic
sign recognition benchmark: A multi-class classification competition,”
in International Joint Conference on Neural Networks (IJCNN), 2011.

[30] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EMNIST: extending
MNIST to handwritten letters,” in International Joint Conference on
Neural Networks (IJCNN), 2017.

[31] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: a database of existing
faults to enable controlled testing studies for Java programs,” in Inter-
national Symposium on Software Testing and Analysis (ISSTA), 2014.

[32] B. Caswell, “Cyber grand challenge corpus.” [Online]. Available:
http://www.lungetech.com/cgc-corpus/

[33] T. Boland and P. E. Black, “Juliet 1.1 C/C++ and java test suite,”
Computer, 2012.

11

https://github.com/cristianstaicu/SecBench.js
http://www.lungetech.com/cgc-corpus/


[34] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. K.
Robertson, F. Ulrich, and R. Whelan, “LAVA: large-scale automated
vulnerability addition,” in IEEE Symposium on Security and Privacy
(S&P), 2016.

[35] R. Ferenc, P. Hegedüs, P. Gyimesi, G. Antal, D. Bán, and T. Gyimóthy,
“Challenging machine learning algorithms in predicting vulnerable
JavaScript functions,” in Proceedings of the 7th International Workshop
on Realizing Artificial Intelligence Synergies in Software Engineering,
RAISE@ICSE 2019, Montreal, QC, Canada, May 28, 2019, T. Menzies
and B. Turhan, Eds. IEEE / ACM, 2019, pp. 8–14. [Online]. Available:
https://doi.org/10.1109/RAISE.2019.00010

[36] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “A C/C++ code vulnerability
dataset with code changes and CVE summaries,” in International
Conference on Mining Software Repositories (MSR), 2020.

[37] K. Herzig and A. Zeller, “The impact of tangled code changes,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR ’13, San Francisco, CA, USA, May 18-19,
2013, T. Zimmermann, M. D. Penta, and S. Kim, Eds. IEEE
Computer Society, 2013, pp. 121–130. [Online]. Available: https:
//doi.org/10.1109/MSR.2013.6624018

[38] A. Hazimeh, A. Herrera, and M. Payer, “Magma: A ground-truth
fuzzing benchmark,” in International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), L. Huang, A. Gandhi,
N. Kiyavash, and J. Wang, Eds., 2021.

[39] S. E. Ponta, H. Plate, A. Sabetta, M. Bezzi, and C. Dangremont,
“A manually-curated dataset of fixes to vulnerabilities of open-source
software,” in International Conference on Mining Software Repositories
(MSR), 2019.

[40] D. A. Tomassi, N. Dmeiri, Y. Wang, A. Bhowmick, Y. Liu, P. T.
Devanbu, B. Vasilescu, and C. Rubio-González, “Bugswarm: mining
and continuously growing a dataset of reproducible failures and fixes,”
in Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019,
J. M. Atlee, T. Bultan, and J. Whittle, Eds. IEEE / ACM, 2019, pp.
339–349. [Online]. Available: https://doi.org/10.1109/ICSE.2019.00048

[41] A. Gkortzis, D. Mitropoulos, and D. Spinellis, “Vulinoss: a dataset
of security vulnerabilities in open-source systems,” in International
Conference on Mining Software Repositories (MSR), 2018.

[42] J. Mitra and V. Ranganath, “Ghera: A repository of android app
vulnerability benchmarks,” in International Conference on Predictive
Models and Data Analytics in Software Engineering (PROMISE), 2017.

[43] Y. Liu, M. Zhang, and W. Meng, “Revealer: Detecting and exploiting
regular expression denial-of-service vulnerabilities,” in Symposium on
Security and Privacy (S&P), 2021.

[44] Z. Bai, K. Wang, H. Zhu, Y. Cao, and X. Jin, “Runtime recovery of web
applications under zero-day redos attacks,” in Symposium on Security
and Privacy (S&P), 2021.

[45] A. Decan, T. Mens, and E. Constantinou, “On the impact of security vul-
nerabilities in the npm package dependency network,” in International
Conference on Mining Software Repositories (MSR), 2018.

[46] Y. W. Chow, M. Schäfer, and M. Pradel, “Beware of the unexpected:
Bimodal taint analysis,” in International Symposium on Software Testing
and Analysis (ISSTA), 2023.

[47] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “AEG: auto-
matic exploit generation,” in Network and Distributed System Security
Symposium (NDSS), 2011.

[48] Y. Zheng, S. Pujar, B. L. Lewis, L. Buratti, E. A. Epstein, B. Yang,
J. Laredo, A. Morari, and Z. Su, “D2A: A dataset built for
ai-based vulnerability detection methods using differential analysis,” in
43rd IEEE/ACM International Conference on Software Engineering:
Software Engineering in Practice, ICSE (SEIP) 2021, Madrid, Spain,
May 25-28, 2021. IEEE, 2021, pp. 111–120. [Online]. Available:
https://doi.org/10.1109/ICSE-SEIP52600.2021.00020

[49] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, 2006.

[50] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. L. Hosking, M. Jump, H. B. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanovic, T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The
DaCapo benchmarks: Java benchmarking development and analysis,” in
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2006.

[51] R. K. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. R. Prasad, “Bugs.jar:
a large-scale, diverse dataset of real-world Java bugs,” in International

Conference on Mining Software Repositories (MSR), A. Zaidman,
Y. Kamei, and E. Hill, Eds., 2018.

[52] P. Gyimesi, B. Vancsics, A. Stocco, D. Mazinanian, Á. Beszédes,
R. Ferenc, and A. Mesbah, “Bugsjs: a benchmark of JavaScript bugs,”
in Conference on Software Testing, Validation and Verification, (ICST),
2019.

[53] M. Selakovic and M. Pradel, “Performance issues and optimizations in
JavaScript: An empirical study,” in International Conference on Software
Engineering (ICSE), 2016, pp. 61–72.

[54] Z. Lin, D. Marinov, H. Zhong, Y. Chen, and J. Zhao, “Jacontebe: A
benchmark suite of real-world Java concurrency bugs,” in International
Conference on Automated Software Engineering (ASE), 2015.

[55] T. Yuan, G. Li, J. Lu, C. Liu, L. Li, and J. Xue, “Gobench: A benchmark
suite of real-world Go concurrency bugs,” in International Symposium
on Code Generation and Optimization, (CGO), 2021.

[56] M. Ohira, Y. Kashiwa, Y. Yamatani, H. Yoshiyuki, Y. Maeda, N. Lim-
settho, K. Fujino, H. Hata, A. Ihara, and K. Matsumoto, “A dataset of
high impact bugs: Manually-classified issue reports,” in International
Conference on Mining Software Repositories (MSR), 2015.

[57] A. Radu and S. Nadi, “A dataset of non-functional bugs,” in International
Conference on Mining Software Repositories (MSR), 2019.

[58] F. Xiao, J. Huang, Y. Xiong, G. Yang, H. Hu, G. Gu, and W. Lee,
“Abusing hidden properties to attack the Node.js ecosystem,” in USENIX
Security Symposium, 2021.

[59] A. Alhamdan and C.-A. Staicu, “SandDriller: A fully-automated ap-
proach for testing language-based JavaScript sandboxes,” in USENIX
Security Symposium, 2023.

[60] C.-A. Staicu, M. T. Torp, M. Schäfer, A. Møller, and M. Pradel,
“Extracting taint specifications for JavaScript libraries,” in International
Conference on Software Engineering (ICSE), 2020.

[61] S. T. Dinh, H. Cho, K. Martin, A. Oest, K. Zeng, A. Kapravelos, G.-J.
Ahn, T. Bao, R. Wang, A. Doupé et al., “Favocado: Fuzzing the binding
code of JavaScript engines using semantically correct test cases,” in
Network and Distributed System Security Symposium (NDSS), 2021.

12

https://doi.org/10.1109/RAISE.2019.00010
https://doi.org/10.1109/MSR.2013.6624018
https://doi.org/10.1109/MSR.2013.6624018
https://doi.org/10.1109/ICSE.2019.00048
https://doi.org/10.1109/ICSE-SEIP52600.2021.00020

	Introduction
	Methodology
	Threat Model
	Types of Vulnerabilities
	Source of Vulnerabilities
	Filtering of Candidate Vulnerabilities
	Executable Exploits
	Patches of Vulnerabilities

	The SecBench.js Benchmark Suite
	Composition of the Benchmark
	Ensuring Successful Exploitation
	Implementation
	Deploying Analysis Code

	Applications of SecBench.js
	Finding Mislabeled Vulnerable Versions
	Finding Flawed Fixes
	Localizing Sink Calls

	Discussion
	Threats to Validity
	Related work
	Vulnerability datasets
	Bug benchmarks
	npm and other package ecosystems
	JavaScript security

	Conclusion
	References

