TECHNISCHE
UNIVERSITAT
DARMSTADT

s Universitat Stuttgart

Extracting Taint Specifications for JavaScript Libraries

Q({(\TIN

S @ %
\Q I | ¢
S (@)
% ;P’“ z
c &
>

Iy (5

StTas AR\'\°

P,?O

Semmle

() GitHub

Cristian-Alexandru Staicu, Martin Toldam Torp, Max Schéfer, Anders Mgller, Michael Pradel

We propose a technique for automatically extracting
taint specifications for JavaScript libraries, based on a
dynamic analysis that leverages the existing test suites
of the libraries and their available clients in the npm
repository. Due to the dynamic nature of JavaScript,
mapping observations from dynamic analysis to taint
specifications that fit into a static analysis is non-trivial.

Client
Code

let userInput = {

tempDir: "./path/to/dir", // source
cacheDir: "./path/to/cache"

}

const _= require("lodash");

const rimraf = require("rimraf");

_.forIntuserlInput: function (value)

let

obil =

(err)
console.log(err);

if

Our main insight is that this challenge can be addressed | ceauirefeniiid processt) exec (am & mwE 1T vaiue) i A7 sink
by a combination of an access path mechanism to name . Sty et
entry and exit points and the use of membranes around e : exit point
the libraries of interest SoRsSt Lol reaulneliEs b
) function rmdir (p, options, originalEr, cb) {
fs.rmdir(p, function (er) ({ // sink
We implement our ideas in a tool called TASER Library })?b(er);
which we put to the test in a large-scale evaluation that Code +
: . module.exports = function rimraf (P} options, icb) {
answers the following research questions: fs.lstat (p, function (er, st) {
RQ1: Can TASER successfully extract specifications? et rmdir gy options, er, cb)
RQ2: How efficient is TASER? y o Cinted value
. ° ° ° ?
RQ3: Are the extracted specifications uosef:ul. | Additional sink:
Taint Propagation:
Overall, we show that the TASER is effective and Summaries (parameter O (member forln (root lodash)))
efficient at extracting taint summaries and these |

sumimaries can improve a commercial taint analysis.

Results

RQ3: LGTM produces new alarms when

Setup: including specifications extracted by TASER. vulnerabilities are actually
> 2300 npm modules .. :
> 200 client Tl New undocumented additional sinks.
clients per module : .
> 10 minutes timeout Rule ID alerts For example, advisory 27:
> 15,892 analyzed clients js/command-line-injection - printer = require ("printer";
. var ecenigninpu = rinceriName ,
> 5,707 clients with taint operations js/file-access-to-http 04 printer.grinft)Directh{
Js/path-injection 20 Clitter: venigniaput
RQ1: hundred of ta:mt summaries is /reflected-xss . cuccess: function (obID) {
"7,840 propagatlons U. — . console. log("sent to" + JobID);
v 146 additional sinks js/regex-injection 13 . }
+35% non-trivial summaries js/remote-property-injection 20

js/user-controlled-bypass
RQ2: 112 seconds per client

js/xss

(parameter O (parameter 1 (member forin (root lodash))))

RQ4: Many security

Additional sink inferred by TASER:

2 (member printer (parameter 0
1 (member printDirect (root printer))))

Membrane-based Analysis

A membrane is the set of all entry and exit points between two software
components. Each reterence that is exchanged through the membrane becomes
part of it. Every point in the membrane is uniquely identified by an access path:

root <uri>)
member <name> <ap>)

\
|
| (return <ap>)
|

(
(
(parameter <1> <ap>)
(
(Lnstance <ap>)

TASER taints values at entry points in the membrane and declassifies values at
exit points:

Module L

Module M @

Client

Plugin P

« N N\ N\

NANA NN
ONONON

Membrane (@ Entry point) Exit point

A taint summary is generated if a flow is detected:
~from an entry point to an existing sink (additional sink)
~from an existing source to an exit point (additional source)
~from an entry point to an exit point (propagation)

	Slide 1

