

Extracting Taint Specifications for JavaScript Libraries

Cristian-Alexandru Staicu, Martin Toldam Torp, Max Schäfer, Anders Møller, Michael Pradel

Extracting Taint Specifications for JavaScript Libraries

Cristian-Alexandru Staicu, Martin Toldam Torp, Max Schäfer, Anders Møller, Michael Pradel

 We propose a technique for automatically extracting

taint specifications for JavaScript libraries, based on a

dynamic analysis that leverages the existing test suites

of the libraries and their available clients in the npm

repository. Due to the dynamic nature of JavaScript,

mapping observations from dynamic analysis to taint

specifications that fit into a static analysis is non-trivial.

Our main insight is that this challenge can be addressed

by a combination of an access path mechanism to name

entry and exit points and the use of membranes around

the libraries of interest.

We implement our ideas in a tool called TASER

which we put to the test in a large-scale evaluation that

answers the following research questions:

 RQ1: Can TASER successfully extract specifications?

 RQ2: How efficient is TASER?

 RQ3: Are the extracted specifications useful?

 RQ4: How does TASER compare to existing solutions?

Overall, we show that the TASER is effective and

efficient at extracting taint summaries and these

summaries can improve a commercial taint analysis.

 We propose a technique for automatically extracting

taint specifications for JavaScript libraries, based on a

dynamic analysis that leverages the existing test suites

of the libraries and their available clients in the npm

repository. Due to the dynamic nature of JavaScript,

mapping observations from dynamic analysis to taint

specifications that fit into a static analysis is non-trivial.

Our main insight is that this challenge can be addressed

by a combination of an access path mechanism to name

entry and exit points and the use of membranes around

the libraries of interest.

We implement our ideas in a tool called TASER

which we put to the test in a large-scale evaluation that

answers the following research questions:

 RQ1: Can TASER successfully extract specifications?

 RQ2: How efficient is TASER?

 RQ3: Are the extracted specifications useful?

 RQ4: How does TASER compare to existing solutions?

Overall, we show that the TASER is effective and

efficient at extracting taint summaries and these

summaries can improve a commercial taint analysis.

Abstract

Examples

Results

Membrane-based Analysis

Setup:
➔ 2300 npm modules
➔ 200 clients per module
➔ 10 minutes timeout
➔ 15,892 analyzed clients
➔ 5,707 clients with taint operations

Taint

Summaries

 Client

 Code

 Library

Code

Additional sink:

(parameter 0 (root rimraf))
Propagation:

(parameter 0 (member forIn (root lodash)))

↓
(parameter 0 (parameter 1 (member forIn (root lodash))))

A membrane is the set of all entry and exit points between two software

components. Each reference that is exchanged through the membrane becomes

part of it. Every point in the membrane is uniquely identified by an access path:

TASER taints values at entry points in the membrane and declassifies values at

exit points:

A taint summary is generated if a flow is detected:
➢ from an entry point to an existing sink (additional sink)
➢ from an existing source to an exit point (additional source)
➢ from an entry point to an exit point (propagation)

RQ1: hundred of taint summaries
✔ 7,840 propagations
✔ 146 additional sinks
✔ 35% non-trivial summaries

RQ2: 112 seconds per client

RQ3: LGTM produces new alarms when

including specifications extracted by TASER.

Rule ID
New
alerts

js/command-line-injection 2

js/file-access-to-http 64

js/path-injection 29

js/reflected-xss 5

js/regex-injection 13

js/remote-property-injection 20

js/user-controlled-bypass 2

js/xss 1

RQ4: Many security

vulnerabilities are actually

undocumented additional sinks.

For example, advisory 27:

Additional sink inferred by TASER:

(member printer (parameter 0
(member printDirect (root printer))))

	Slide 1

