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ABSTRACT

Modern JavaScript applications extensively depend on third-party

libraries. Especially for the Node.js platform, vulnerabilities can

have severe consequences to the security of applications, resulting

in, e.g., cross-site scripting and command injection attacks. Existing

static analysis tools that have been developed to automatically

detect such issues are either too coarse-grained, looking only at

package dependency structure while ignoring dataflow, or rely on

manually written taint specifications for the most popular libraries

to ensure analysis scalability.

In this work, we propose a technique for automatically extract-

ing taint specifications for JavaScript libraries, based on a dynamic

analysis that leverages the existing test suites of the libraries and

their available clients in the npm repository. Due to the dynamic

nature of JavaScript, mapping observations from dynamic analysis

to taint specifications that fit into a static analysis is non-trivial.

Our main insight is that this challenge can be addressed by a com-

bination of an access path mechanism that identifies entry and exit

points, and the use of membranes around the libraries of interest.

We show that our approach is effective at inferring useful taint

specifications at scale. Our prototype tool automatically extracts

146 additional taint sinks and 7 840 propagation summaries span-

ning 1 393 npmmodules. By integrating the extracted specifications

into a commercial, state-of-the-art static analysis, 136 new alerts

are produced, many of which correspond to likely security vul-

nerabilities. Moreover, many important specifications that were

originally manually written are among the ones that our tool can

now extract automatically.

CCS CONCEPTS

• Software and its engineering → Software notations and

tools.
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1 INTRODUCTION

JavaScript is powering a wide variety of web applications, both

client-side and server-side. Many of these applications are security-

critical, such as PayPal, Netflix, or Uber, which handle massive

amounts of privacy-sensitive user data and other assets. An impor-

tant characteristic of modern JavaScript-based applications is the

extensive use of third-party libraries. On the npm platform more

than 1 million packages (mostly libraries) are available,
1
and only a

few of them have been screened intensively for security vulnerabil-

ities. A challenge when analyzing the security of npm packages is

that they are often not self-contained, but they in turn depend on

other npm packages for providing lower-level functionality. Recent

work shows that, on average, every npm package depends on 79

other packages and on code published by 39 maintainers [47]. To

correctly understand an application that uses npm packages, one

needs to consider all these dependencies.

Two main directions are being pursued for automatically se-

curing npm packages. First, there are tools that aggregate known

security vulnerabilities in specific versions of individual libraries

and report them to the developer directly. For example, npm audit
analyzes all the dependencies of a Node.js application and warns the

developer about any known vulnerabilities in the dependent-upon

code. GitHub, Snyk, and other companies offer similar services,

and related work [27] advertises such security controls. The main

limitation of this approach is the high number of false positives.

Often the critical part of the library is not used by the application,

or it is used in a way that is completely harmless. For example,

an application may use an npm module vulnerable to command

injection attacks, but it passes only string constants provided by

the developer as input to this module. We believe it is important

to make the distinction between merely relying on a library that

contains a potential known vulnerability and using that library

in an insecure way. Another problem with these tools is that li-

braries that use insecure features of the JavaScript language or of

the Node.js framework are often not registered as having “known

vulnerabilities” if their documentation indicates that these features

are being used internally. An example of such a library is the pack-

age jsonfile that provides functionality for easily accessing JSON

1http://www.modulecounts.com/
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files. Even though such a library is not considered vulnerable by

itself, it may be used in an insecure manner, e.g., by propagating

attacker-controlled data into file system paths.

A more precise approach for securing JavaScript applications,

pursued both by academia and by industry practitioners, is static

program analysis. In taint analysis, which is a kind of program anal-

ysis that can in principle detect most common forms of security

issues, security properties are expressed as direct information flows

from sources to sinks: either from untrusted sources to sensitive

sinks (integrity) or conversely from sensitive sources to untrusted

sinks (confidentiality). We focus on integrity because it covers

the vast majority of security vulnerabilities reported by the com-

munity,
2
and we ignore indirect flows, also called implicit flows,

because they have been shown to appear seldom in real-world npm

vulnerabilities [43].

Modularity is the key to scalable static analysis. For example,

GitHub’s LGTM
3
platform includes a state-of-the-art taint analysis

for JavaScript (and other languages), which achieves high scala-

bility by analyzing modularly. When analyzing one module of an

application, other modules are either ignored or treated according

to manually written specifications that describe essential taint flows

where available. Ignoring modules leads to inaccurate analysis re-

sults, while manually constructing specifications is a demanding

and error-prone task, so only a limited number of npm modules are

considered. An important question hence is how to obtain specifi-

cations of modules in an automated way.

Inspired by Modelgen for Android [9], we present a technique

that dynamically infers explicit taint flow summaries for npm mod-

ules, to be utilized in a static analysis, such as LGTM. Besides

being designed for JavaScript, our technique is more general than

Modelgen, allowing for complex summaries to be extracted. For

example, we are the first to support summaries involving callback

arguments and instantiated exported classes. Moreover, our tech-

nique considers the large amount of transitive dependencies in

npm and thus allows the extraction of summaries for multiple npm

packages in the same execution.

Another source of inspiration is the NoRegrets tool [29] that

leverages the vast number of open source packages available in

the npm repository to obtain information about how the most

important libraries are being used. Many of those packages have

test suites, and by running the test suite of a package we can gain

information about the taint flows in all the packages it depends on,

both directly and transitively.

A central technical challenge for adapting the Modelgen idea to

our setting is that JavaScript is a highly dynamic language, which

makes it non-trivial to map observations from a dynamic analysis

to taint specifications that fit into a static analysis. To this end, we

adopt the notion of dynamic access paths from NoRegrets, allowing

us to identify entry and exit points of taint flow in the libraries. Our

dynamic analysis uses a variant of membranes [11, 17, 25, 30] for

tracking the taint flow between libraries and clients. It identifies

flows between entry and exit points (propagations), between entry

points and existing sinks (additional sinks) and between existing

sources and exit points (additional sources). Finally, we propose

2https://www.npmjs.com/advisories
3https://lgtm.com

1 let userInput = {

2 tempDir: "./path/to/dir",

3 cacheDir: "./path/to/cache"

4 }

5 const _ = require("lodash");

6 const rimraf = require("rimraf")

7

8 let obj = _.forIn(userInput , function(value) {

9 rimraf(value , function(err) {

10 if (err)

11 console.log(err)

12 })

13 })

Figure 1: A typical example of JavaScript code that uses npm

modules. With dotted/blue we mark exit points from the

client code and with solid/orange the entry points from the

library code.

deploying one membrane per npm module and hence extracting

summaries for multiple modules at once.

We show that our approach is highly scalable by successfully

running our dynamic analysis on 15 892 clients of 751 packages.

The dynamic analysis is efficient, spending, on average, only 112

seconds per successfully analyzed client or 302 seconds per in-

ferred specification. In total, it extracts 146 additional taint sinks

and 7 840 propagation summaries spanning 1 393 modules. 35% of

the summaries contain complex taint flows, such as between an

argument of an exported method and a parameter passed by the

library to a callback. The evaluation also shows that the extracted

summaries can improve static analyses by enabling it to reveal oth-

erwise missed vulnerabilities: 136 new alerts are produced, many

of which correspond to likely vulnerabilities.

In summary, our contributions are:

• We present a novel, highly-scalable specification extraction

technique for JavaScript libraries that builds on a dynamic

taint analysis and leverages existing test suites.

• We report our results from an extensive experimental eval-

uation of the approach. The results show that the dynamic

analysis is able to infer non-trivial and accurate taint flow

models in widely used npm modules.

• We demonstrate that the inferred taint specifications can be in-

tegrated into an existing static analysis tool, thereby enabling

discovery of previously unknown security vulnerabilities.

2 MOTIVATING EXAMPLE

Let us consider the example in Figure 1. This code fragment uses

two of the most popular npm packages: lodash, a general-purpose
utility library, and rimraf, a simple library for recursively deleting

directories on the disk. In the presented example, the forInmethod

from lodash is used to iterate through the values of each property

on the user input object. Each of these values is then passed to the

rimraf module.

A human or an automated tool that aims at analyzing the code

fragment in Figure 1 must first understand the essential semantics

of the two modules. For example, one needs to understand that if

some user input is passed to rimraf without sanitization, then it

exposes a directory traversal vulnerability. However, this style of

code can hinder understandability, both for unexperienced users

https://www.npmjs.com/advisories
https://lgtm.com
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and for static analysis tools. Specifically, it may not be clear that

by invoking the forIn method with two parameters – an object

to be traversed and a callback function – the second parameter

will be invoked with the property values of the first parameter as

arguments.

One way to address this problem is to analyze the library code

together with the client code using a whole-program dataflow ana-

lyzer. However, that approach suffers from serious scalability issues.

For example, the implementation of the apparently trivial forIn
method spans across 32 files. In Figure 2 we show a subset of the

code that needs to be analyzed. Statically analyzing such a large

amount of highly dynamic code is extremely expensive and tends

to give prohibitively imprecise results [2].

When trying to analyze the source code of the rimraf mod-

ule, one is faced with even greater challenges, as illustrated by

Figure 3. To reveal the directory traversal problem discussed ear-

lier, one needs to show that there is an unsanitized flow from the

first parameter of the rimraf function to one of the file system

access methods, e.g., fs.rmdir. However, as shown by the example,

the call to this method is dispatched using dynamically attached

methods on the options object. Once again, to the best of our

knowledge, existing static analysis tools for JavaScript are unable

to successfully analyze such highly-dynamic code at scale and with

a precision that is practically useful.

Modular analysis, as exemplified by LGTM, addresses this chal-

lenge by analyzing each package in isolation. If a package depends

on other packages, those are either ignored or modeled using

manually-written specifications that capture the essential dataflows.

Relying on simple generic specifications, e.g., saying that when-

ever a parameter is tainted then so is the return value, would be

too imprecise for this example and lead to the static analysis miss-

ing important flows. Since creating useful specifications manually

is difficult and not scalable, efficient automated alternatives are

needed.

Our approach leverages the information in the npm repository

about packages and their dependencies, together with the package

source code available on GitHub. For this specific example, both

lodash and rimraf have numerous open-source clients, many with

test suites. By dynamically analyzing the executions of those test

suites, we can automatically learn useful specifications.

3 TAINT SPECIFICATIONS FOR MODULES

The specifications we are interested in summarize the taint-relevant

information for entry and exit points of JavaScript libraries. For

example, one can specify that the information from entry point A
may flow into exit point B or that values passed to an entry point

eventually reach a potentially dangerous operation.

The careful reader may have observed that there is a duality

between the exit points of the client code, e.g., in Figure 1, and

the entry points of the library, e.g., in Figure 2. For example, the

userInput argument in line 8 corresponds to the object parameter

in line 18. We will refer to both an entry point and its corresponding

exit point by using the term contact point. We also introduce an

access path mechanism to uniquely identify each contact point.

The specifications described in the remainder of this section can

in principle be produced in multiple ways: either manually or by

14 /* In the file forIn.js */

15 var baseFor = require('./_baseFor '),

16 castFunction = require('./_castFunction '),

17 keysIn = require('./keysIn ');

18 function forIn(object , iteratee) {

19 return object == null

20 ? object

21 : baseFor(object , castFunction(iteratee), keysIn );

22 }

23 module.exports = forIn;

24 /* In the file _baseFor.js */

25 var createBaseFor = require('./_createBaseFor ');

26 var baseFor = createBaseFor ();

27 module.exports = baseFor;

28 /* In the file _createBaseFor.js */

29 function createBaseFor(fromRight) {

30 return function(object , iteratee , keysFunc) {

31 var index = -1,

32 iterable = Object(object),

33 props = keysFunc(object),

34 length = props.length;

35

36 while (length--) {

37 var key = props[fromRight ? length : ++index];

38 if (iteratee(iterable[key], key, iterable) === false) {

39 break;

40 }

41 }

42 return object;

43 };

44 }

45 module.exports = createBaseFor;

46 /* ... skipped the other transitive dependencies ... */

Figure 2: The implementation of lodash’s forInmethod. For

space reasons, only two of the 31 dependent files are shown.

With dotted/blue we mark entry points to the library code

and with solid/orange the exit points from the library code.

47 var fs = require("fs")

48 function defaults (options) {

49 var methods = [

50 'unlink ', 'chmod ', 'stat', 'lstat ', 'rmdir ', 'readdir '

51 ]

52 methods.forEach(function(m) {

53 options[m] = options[m] || fs[m]

54 m = m + 'Sync'

55 options[m] = options[m] || fs[m]

56 })

57 }

58 function rmdir (p, options , originalEr , cb) {

59 defaults(options)

60 options.rmdir(p, function (er) {

61 cb(er)

62 });

63 }

64 module.exports = function rimraf(p, options , cb) {

65 options.lstat(p, function (er, st) {

66 return rmdir(p, options , er, cb)

67 });

68 }

Figure 3: Simplified source code for the rimraf module.

using a static or dynamic analysis. Section 4 presents an automatic

inference process based on dynamic analysis.

3.1 Specifying Contact Points

Inspired by previous work to detect breaking changes in npm pack-

age updates [29, 31], we propose using an access path mechanism
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for specifying contact points. An access path, or short ap, can be

described as an S-expression, which is read from the innermost

expression outwards. Each type of symbol corresponds to an oper-

ation in the JavaScript language.

ap ::= (root <uri>)
| (member <name> <ap>)
| (parameter <i> <ap>)
| (return <ap>)
| (instance <ap>)

The innermost subexpression of a path always contains a root
symbol, which holds an URI that refers to the module. For space

reasons, we use package names instead of package URIs. For ex-

ample, (root dotenv) refers to the module that is loaded when

calling require('dotenv'). The other symbols are member to refer to
properties of objects, parameter that refers to the i-th parameter

of a function, return that refers to the return value of a call, and

instance that refers to constructed values. For example, the path

(parameter 0 (member forIn (root lodash))) represents both
the exit point in line 8 of Figure 1 and the first entry point in line 18

of Figure 2. In the remainder of this section we show how access

paths can express different kinds of taint specifications.

We assume that a collection of so-called known sources and

sinks is provided. For example, values obtained from network com-

munication via the Node.js standard library are commonly treated

as sources, and arguments to exec and eval are sinks.
We are interested in three kinds of specifications: additional

sinks when we observe a flow from an entry point to a known sink,

additional sources when there is flow from a known source to an

exit point, and propagation summaries when there is a flow from

an entry point to an exit point. We will now proceed to describe

each of them in detail.

3.2 Propagation Summaries

The propagation summaries, or propagations for short, specify how

taint may flow in and out of a library’s functions. For example,

a propagation summary can specify that if a tainted value enters

the library as a specific argument to a function, then specific exit

points of the library, e.g., properties on the return value, should also

be considered tainted. Having such information available allows

program analyses to reason about the potential taint flows without

needing to reanalyze the source code of the library for every client.

The most basic form of flow is from an argument of a function

to its return value, either because the argument is returned directly,

or because the argument is used in the computation of the return

value. Other more complicated forms of flow may also occur. For

example, if an argument is written to some internal state of the

library, and this state is then returned from another function, then

we have a taint flow from the argument of one function to the

return value of another function, which can also be captured as a

propagation summary.

A propagation summary consists of two access paths: one that

represents the point in the library API where the tainted value

enters, and one that represents the point where the tainted value

exits. Consider Example 1 where a function f has a parameter x and

returns an object that has a property p with a value obtained from

the p property of x.

Example 1
69 //module m

70 function f(x) {

71 return { p : x.a };

72 }

73 module.exports.f = f;

Taint Specification
(member a (parameter 0 (member f (root m))))y

(member p (return (member f (root m)))

The interesting taint flow for this code is modeled by the taint

specification shown next to the example, which indicates that taint

flows from x.a to the p property of f’s return value.

This way of expressing taint flows is sometimes inconvenient.

For example, a common JavaScript pattern is to iterate through all

the properties of an object, which means that the accessed property

names differ from client to client. An example of this reflective

pattern is seen in Example 2.With the current notion of propagation

summaries, we can only express flows involving specific properties,

but in this case the relevant property names depend on the clients.

For this purpose we introduce a wildcard notation for referring to

every property of an object: (member * <ap>). For example, one

may refer to all the properties of the obj parameter in the program

example with (member * (parameter 0 (root sum)) as shown

in the taint specification of Example 2.

Example 2
74 //module sum

75 function f(obj) {

76 let sum = 0;

77 for (prop in obj) {

78 sum += obj[prop];

79 }

80 return sum;

81 }

82 module.exports.f = f;

Taint Specification
(member * (parameter 0 (member f (root sum))))y

(return (member f (root sum))

As mentioned earlier, callbacks are common contact points in

npm modules. Our specifications refer to callbacks by treating a

parameter as a function. The following specification summarizes

the part of the lodash library presented in Figure 2, using a callback
parameter exit point:

(member * (parameter 0 (member forIn (root lodash))))y
(parameter 0 (parameter 1 (member forIn (root lodash))))

This propagation says that the value of every property of the object

passed as the first argument of the forIn function may flow into

the first parameter of the callback passed as the second argument.

A final propagation pattern worth discussing is one that involves

contact points with return values. In Example 3, the paddermodule

exports a single anonymous function in line 84. However, this

function in turn creates an object with an lpad property pointing

to an internal anonymous function. This case corresponds to the

factory method design pattern from object-oriented literature. After

invoking the main exported method of the module, a client obtains

a reference to the internal object declared in line 85, which in turn

allows the client to invoke the internal anonymous function from

line 86. Thus, there are two exit points of the padder library in

the presented example: one that returns an object with an lpad
method, in line 89, and one corresponding to that method itself, in

line 87. The latter depends on the former, because an object with

the lpad method is only exposed to the client through the first exit

point, which in turn creates more entry and exit points for the lpad
method.
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Example 3
83 //module padder

84 module.exports = function () {

85 let res = {};

86 res.lpad = function(s) {

87 return " " + s;

88 }

89 return res;

90 }

Taint Specification
(parameter 0 (member lpad (return (root

padder))))y
(return (member lpad (return (root

padder))))

3.3 Additional Sinks and Sources

If a value passed into a library reaches a known sink, we say that

the entry point through which the value entered is an additional

sink. Intuitively, passing the value to that contact point or to the

sink itself has the same security implications for the client of the

library, hence a program analysis can treat them the same way.

Revisiting the source code of the rimraf library in Figure 3, we

can observe that the value passed as first argument to the main

library function ends up in fs.rmdir(), which is a known sink for

directory traversal vulnerabilities. This method allows recursively

removing any folder on the disk, hence if an attacker can control

the value passed into it, she can cause serious harm on the system.

Therefore, it makes sense to specify the contact point (parameter
0 (root rimraf)) as an additional sink.

Conversely, if inside the library a tainted value is created which

then escapes into the client code through an exit point, we say that

the exit point is an additional source. Example 4 shows a simple

module that performs a TCP request and invokes a callback when-

ever data is received from the target server. This data should be

considered tainted since it comes from untrusted third-party com-

puters, so it is reasonable to specify the contact point (parameter
0 (parameter 2 (root my-tcp)) as an additional source.

Example 4
91 //module my-tcp

92 module.exports = function (host, port, cb) {

93 const net = require('net');

94 const client = new net.Socket ();

95 client.connect(port, host, function () {});

96 client.on('data', function(data) {

97 cb(data);

98 });

99 }

Even though our dynamic analysis presented in Section 4 can

in theory extract all the three kinds of specifications presented so

far, our prototype implementation introduced in Section 6 only

supports the extraction of propagations and additional sinks. The

main reason for omitting extraction of additional sources is that ex-

isting security vulnerability reports for npm packages often involve

additional sinks, for example CVE-2017-1000219 or CVE-2018-3772,

but vulnerabilities caused by additional sources are less common.

4 INFERRING TAINT SPECIFICATIONS VIA

DYNAMIC ANALYSIS

We now present a technique for dynamically inferring taint speci-

fications, i.e., propagation summaries and additional sinks, of the

form described in Section 3. The goal is to find relations between

entry points and exit points, between entry points and existing

sinks, and between existing sources and exit points.

source

sink

Npm moduleClient

Figure 4: Inferring specifications for a single module: taint

values at entry points and sources, and then check for taints

at sinks and exit points. The arrows show information flows

and the shaded gray area represents the membrane.

Figure 4 illustrates how our technique works for a single npm

module. The arrows represent information flow, possibly spanning

multiple methods and modules. When the test suites are executed,

values are intercepted at entry points and tainted with a unique

identifier per entry point. The taint inside the module is then prop-

agated using a dynamic taint analysis. Whenever a tainted value

reaches a sink or an exit point, an additional sink or a propagation

summary, respectively, is generated. Similarly, if a value that is

tainted by an internal source is observed at an exit point, an addi-

tional source is generated for that exit point. All taints are removed

at exit points, so we only infer specifications for the library code

and not for the client code.

Previous work [9] considers arguments of methods in the public

API as entry points and return values as exit points, but as the mo-

tivating example shows, this is insufficient for many npm modules.

JavaScript libraries interact with their clients in complex ways, e.g.,

through callbacks like the ones in Figure 1, or by allowing plugins

to be configured inside the library. Therefore, it is non-trivial to

determine where the library code starts and where the client code

ends. One way to refer to this point of contact between components

and thus to generalize the idea of entry and exit points is by using

the concept of membranes [11, 30].

4.1 Membrane-Based Analysis

The main idea of a membrane is to interpose analysis behavior

on every interaction between the client and the library. Moreover,

every reference that passes through the membrane becomes part of

it. Existing work describes how to implement membranes and how

to use them for implementing generic policies such as “the library

should never use the native module fs”. However, to be useful in

our setting, we need a way to distinguish between entry and exit

points of the library and to uniquely refer to every such point in

the membrane.

To rigorously define membranes, we first introduce a way of

intercepting operations on a given value. To this end, we rely on

proxies, a concept introduced in ECMAScript 6. A proxy P(v) for a
valuev is a wrapper object that attaches traps to the wrapped value.

Every operation applied to the proxy results in an invocation on the

corresponding trap. For example, property reads, property writes,

function applications, and constructor applications all result in their
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Table 1: Creation of contact points inside the membrane and the corresponding taint operations executed before and after the

proxied operation. The direction indicates whether the proxy corresponds to an entry or an exit point. The taint(v, ap) action
associates a taint corresponding to the access path ap to runtime value v. The checkTaint(v, ap) action recursively searches

for tainted values in v, where the taint has the same root package as the access path ap. Finally, untaint(v, ap) recursively
declassifies all the values in v that have a taint with the same root as the access path ap.

Operation Existing contact point New contact point(s) Pre action Post action

Access path Direction Access path Direction

require("foo"); - - ap = (root foo) ENTRY - -

x.prop apx ENTRY ap = (member prop apx ) ENTRY - -

apx EXIT ap = (member prop apx ) EXIT - taint(x.prop, ap)

res = x(arg) apx ENTRY ap
par

=(parameter <i> apx ) EXIT taint(arg, ap
par

) checkTaint(res, apx )
ap

ret
=(return apx ) ENTRY untaint(res, apx )

apx EXIT ap
par

=(parameter <i> apx ) ENTRY checkTaint(arg, apx ) taint(res, ap
ret
)

ap
ret
=(return apx ) EXIT untaint(arg, apx )

res = new x(arg) apx ENTRY ap
par

=(parameter <i> apx ) EXIT taint(arg, ap
par

) checkTaint(res, apx )
ap

ret
=(instance apx ) ENTRY untaint(res, apx )

apx EXIT ap
par

=(parameter <i> apx ) ENTRY checkTaint(arg, apx ) taint(res, ap
ret
)

ap
ret
=(instance apx ) EXIT untaint(arg, apx )

corresponding traps firing. The traps can modify the behavior of

the operation or just perform observing operations, such as logging.

A proxy can therefore observe operations applied to the wrapped

value, and even decide to modify these operations. Our analysis

uses proxies to perform taint-relevant operations before and after

the proxied operation is executed. We also need a way to associate

a unique address, i.e., an access path, to each proxy and to specify

whether the proxy corresponds to an exit or an entry point:

Definition 1. A contact point, denoted ⟨v, ap,d⟩, is a tuple con-
sisting of a proxy P(v) around a value v , an access path ap that
uniquely identifies the contact point, and a direction flag d that speci-
fies whether the contact point is an entry or an exit point.

For simplicity, we abuse the notation for a contact point ⟨v, ap,d⟩
by using ⟨v⟩ whenever the access path and the direction are not

relevant for the description. One can specify entry and exit points

for a library by introducing proxies around exported API methods

in the library source code. The challenge lies in automatically iden-

tifying all the values that need to be proxied for intercepting all

the interactions between two npm modules. Membranes provide

an elegant solution to this problem:

Definition 2. A membrane M is a set of contact points in-
terposed between a library ℓ and its clients. M is initialized with
{⟨vℓ , (root ℓ),ENTRY⟩}, i.e., the contact point that wraps the main
value vℓ exported by the library. For every value v that is passed into
or returned by an existing contact point in M, a new contact point
⟨v, apv ,d

′⟩ is added to the membrane, i.e.,M :=M∪{⟨v, apv ,d
′⟩}.

The new access point apv is derived from the existing ap by

picking the grammar rule from Section 3.1 that corresponds to

the JavaScript operation v passing through the exit point, e.g., a

property access or a parameter to a function call. Similarly, the

direction of the new contact point d ′ is derived from the direction

of the original contact point d by using the following observation:

the direction changes for all the values that are passed as arguments

to a method in the membrane. Let us consider a function object

that is passed into an entry point of a library as an argument. Once

it reaches the other side of the membrane, i.e., in the library code,

it should be considered as an exit point for the library. In Table 1

we summarize all the possible operations on a contact point and

how to derive the access paths and direction flags for the new

contact points. We also show the auxiliary operations necessary for

tracking tainted values in the pre and post action columns. Note

that both arguments and return values can be entry or exit points,

depending on the direction flag.

To illustrate how contact points are created, consider the mem-

brane between lodash and its client in Figure 1. The first contact

point of the membrane is created when the library is required in

line 5, i.e., M := {⟨_⟩}. When the forIn property is accessed in

line 8 a new contact point is added to the membrane,M :=M ∪

{⟨_.forIn⟩}. When the accessed property is invoked in the same

line, three contact points are created, i.e.,M :=M∪{⟨userInput⟩,
⟨function . . . ⟩, ⟨obj⟩}. Finally, when the callback is invoked, three
more contact points are created, one for each parameter. The access

paths for each of these contact points are shown in Figure 5; they

correspond to a derivation tree of the grammar in Section 3.1. To

obtain the access path of a given contact point, one should traverse

the tree from the root and replace all the ⋄ symbols with the access

path of the parent node. For example, the access path of ⟨first⟩ is:

(parameter 0 (parameter 1 (member forIn (root lodash))))

The dynamic taint analysis we use for propagating taint inside

analyzed modules is fairly standard, with few idiosyncrasies. As

noted earlier, we implement the taint-relevant operations described

in the last column of Table 1 inside each module’s membrane. These

operations are in fact additional sources and sinks from the taint

analysis’ perspective since they either attach taint or check/remove

taint. Once a property p is accessed on a value having a taint t,
instead of directly propagating the taint, we create a new tainted

value (member p t). If the property p itself is also tainted then we

propagate the taint (member * t). The intuition is that the tainted

property comes from outside the module or from iterating through

a tainted object, hence it should be considered as a generic access.
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_ _.forIn

obj

userInput

function(...

first

second

third

(root lodash) (member forIn ⋄)

(return ⋄)

(parameter 0 ⋄)

(parameter 1 ⋄)

(parameter 0 ⋄)

(parameter 1 ⋄)

(parameter 2 ⋄)

Figure 5: Contact points in the membrane between lodash and the client code in Figure 1.
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Figure 6: Inferring specifications for multiple modules at

once: every entry point adds a unique taint and every corre-

sponding exit point declassifies it. The semantics of shapes

and colors are the same as in Figure 4. The dotted arrows

depict equivalences between contact points.

4.2 Multi-Module Analysis

Since an npm module can in turn use other npm modules, we

propose deploying a membrane around each module to maximize

the number of extracted specifications. We present this setup in

Figure 6 in which module M interacts with two other modules: a

direct dependency L and a plugin P. For now let us consider the

relation between module M and its dependency L. Every entry

point attaches a taint that uniquely identifies that entry point to

each value that passes through it, e.g., entry pointM1 sets taintm1.

When a value passes through an exit point of a module, the analysis

removes all the taints corresponding to that particular module. As

a result, tainted values for module M can only live inside M or

inside M’s transitive dependencies, such as L. This behavior can

be observed when following the information flow between entry

point M1 and exit point M3. The taintm1 is carried by the value

all the way through module L until the exit pointM3. Our analysis

infers two propagation specifications:M1 → M3 and L1 → L3.

Similarly, the value that enters through M2 inside module M

gets attached the taint m2, and further enters through L2 inside
module L, where it gets attached taint l2. Thus, when the value

finally reaches the sink inside module L, it has two taints,m2 and

l2. The analysis generates two additional sinks, forM2 and for L2,
since from the client’s perspective a value may flow from one of

these entry points into an existing sink.

4.3 Handling Plugins

Onemaywonder whether or not amodule’s dependencies should be

considered as part of the module’s code as described in the previous

section. We propose distinguishing between two types of dependen-

cies: direct dependencies and plugins. A direct dependency is one

that is required verbatim by the developer in the source code of the

module, and a plugin is a dependency that is injected by the client

code. For registering a plugin, a client needs to pass a reference to

the plugin through the membrane. An example of this pattern can

be observed in Example 5 that shows the popular express frame-

work instantiated with the plugin body-parser. The client code
loads the body-parser plugin and passes it to the expressmodule

through the use method that is part of express’s membrane.

Example 5

100 const express = require('express ');

101 const bodyParser = require('body-parser ');

102 const app = express ();

103 app.use(bodyParser.json ())

Treating plugins differently when extracting specifications is

extremely important because we do not want to infer specifications

that only apply when a certain plugin is loaded. Instead, we want

the specifications to be as widely applicable as possible. There-

fore, direct dependencies that are loaded inside the module are

considered part of the code base of the module, while plugins are

not.

Consider the relation between module M and its plugin P in

Figure 6. When the value carrying the taintm4 reaches the mem-

brane that separates M from P the taint is removed; we say that the

value is declassified. Overall, for the flow betweenM4 andM7 that

passes through plugin P, our analysis infers three specifications:

M4 → M6,M5 → M7, and P1 → P2.
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5 USING TAINT SPECIFICATIONS

The main use case of the extracted taint specifications is for im-

proving existing program analyses. Most importantly, taint specifi-

cations can be consumed by static analyses. The benefits of hybrid

analyses, i.e., static plus dynamic, are thoroughly explored in the lit-

erature. Typically, a static analysis uses the results from a dynamic

analysis, either to get a more precise result or to get coverage of

code that is otherwise difficult to analyze statically. As mentioned in

the introduction, industrial static analyses sometimes do not even

try to analyze Node.js modules, but instead rely on manually writ-

ten taint specifications or coarse-grained assumptions about taint

flow in modules. However, such specifications are both error-prone

and hard to maintain. In contrast, our specification generation anal-

ysis is fully automatic, and can therefore easily be re-run whenever

modules are updated. Moreover, we show that there is a significant

overlap between the specifications our analysis generates and exist-

ing manually-written models used by the commercial LGTM taint

analysis, demonstrating that our analysis can infer precise mod-

ule specifications that resemble and improve upon hand-written

specifications.

Another use case for the extracted specifications is to serve as a

form of documentation for the module they were extracted from.

Effectively, they can act as a contract between module developers

and module users that specifies, for example, who is responsible

for sanitizing end user input. We observe that many security vul-

nerabilities reported by the community or by researchers [42] are

actually additional sinks. For example, a typical vulnerability occurs

when a user-supplied value is involved in constructing some string

that is then executed by the eval function. In some unfortunate sit-

uations attackers can compose the user-supplied value in ways that

enables executing malicious code. To warn users of modules about

potential vulnerabilities, inferred specifications could be shown to

developers. For example, an additional sink could inform the client

that an argument passed to a specific method should be sanitized

to prevent malicious code injection attacks.

Finally, we propose using the generated taint specifications for

regression analysis. When a previously unobserved taint specifi-

cation is suddenly generated for a new version of a library, e.g., a

new additional sink appears, both the developer of the library and

its clients should be alerted. Essentially, a change in a taint spec-

ification should be treated as a change to the API. Automatically

inferred specifications could help automate this kind of regression

analysis.

6 EVALUATION

Implementation. We implement our specification extraction tech-

nique in a tool called Taser
4
. The dynamic analysis component

is built on top of NodeProf [44], an instrumentation framework

for Node.js. As a starting point for finding additional sinks, we

mark 40 methods of the built-in JavaScript APIs as sinks. These

methods cover five well-known security issues: command injection,

code injection, directory traversal, regular expression injection, and

NoSQL injection. We implement limited support for sanitizers by

declassifying any information flow that passes through a function

4
It is an abbreviation of the longer TAint Spec ExtractoR.

and an npm module whose name or dynamic access path contains

specific strings, e.g., “escape” or “sanitize”.

Benchmarks. We apply Taser to 751 npm packages, all from the

top-1000 most depended upon packages. Because some packages

contain multiple modules and because Taser performs a multi-

module analysis we analyze a total of 2 300 modules. For each

analyzed npm package, we consider the 200 highest rated clients,

according to npm stars, and execute their test suites to analyze the

execution with Taser. We stop a test suite after a timeout of 10

minutes. If available, we also use the test suite of the npm package

itself for driving the dynamic analysis. Ignoring some clients that

we currently cannot analyze, e.g., due to test frameworks Taser

does not support, or due to limitations of our implementation, the

evaluation covers 15 892 clients, out of which 5 707 clients trigger

at least one creation of a tainted value.

Research questions. Our evaluation focuses on the following re-

search questions:

RQ1 How many taint specifications does Taser extract?

RQ2 How efficient is the analysis?

RQ3 Are the extracted specifications useful for statically analyz-

ing the security of npm modules?

RQ4 How do the extracted specifications compare to manually

created models of npm modules?

The implementation of Taser and experimental data are avail-

able at http://brics.dk/taser/.

RQ1: Extracted Taint Specifications

For the 2 300 analyzed modules, Taser extracts 7 840 propagation

summaries and 146 additional sinks. For 457 packages, the tool

extracts at least one propagation summary, and for 118 packages, it

extracts at least one additional sink. The overall amount of specifica-

tions shows that manually writing taint specifications for thousands

of packages is highly impractical. Instead, Taser enables extracting

specifications automatically and updating them regularly with little

effort.

We also check whether the specifications Taser extracts contain

advanced language constructs not supported by previous work [3,

9]. To that end, we count every propagation summary that involves

(i) instantiated objects, i.e., an instance symbol in one of its access

paths, (ii) callbacks, i.e., two or more parameter symbols in one of

its access paths, or (iii) nested API calls, i.e., two or more return
symbols in one of its access paths. We find 595 propagation sum-

maries with instantiated objects, 1 467 with callbacks and 1 578 with

nested API calls. In total, at least 2 838 specifications, i.e., 35% of the

total, could not have been extracted by those previous approaches

(even if re-implemented for JavaScript).

RQ2: Efficiency of the Dynamic Analysis

Generating specifications is not something that should be done

often, so having a relatively large one-time cost is acceptable in

practice. However, over time new libraries are created and existing

libraries are updated, so new taint specifications naturally have

to be generated for those libraries. Therefore it is interesting to

consider the computational cost of generating taint specifications.

On average, it takes 112 seconds to run the test suite of one client

http://brics.dk/taser/
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Rule ID New alerts

js/command-line-injection 2

js/file-access-to-http 64

js/path-injection 29

js/reflected-xss 5

js/regex-injection 13

js/remote-property-injection 20

js/user-controlled-bypass 2

js/xss 1

Total 136

Figure 7: Improvements to LGTM’s standard analysis; rule

IDs are hyperlinked to their documentation.

with the dynamic analysis enabled. This number depends on many

factors, such as the size of the test suite, and how many JavaScript

statements are being executed. Regenerating specifications for up-

dated libraries and generating specifications for new libraries can be

done in only a few hours per library, which we consider acceptable

for specifications that can be reused repeatedly by a static analysis

and other applications.

RQ3: Usefulness for Static Analysis

We evaluate the usefulness of Taser-extracted taint specifications

by integrating them into LGTM, a state-of-the-art, industrial static

analysis platform. A free instance hosted at https://lgtm.com
continuously checks more than 130 000 open-source projects (in-

cluding thousands of npm modules) for security problems. Without

the specifications, LGTM reasons about third-party npm modules

based on a limited number of manually created taint specifications.

We add the extracted specifications into the static analysis and

measure how many additional security alerts the analysis reports.

Figure 7 shows the improvements gained from enhancing LGTM’s

standard security analysis suite with the additional sinks and prop-

agation summaries extracted by Taser. The first column lists the

LGTM rule ID; for instance, js/path-injection flags potential

directory-traversal vulnerabilities. The second column shows the

number of new alerts found by incorporating our additional sinks

and propagation summaries. In total, Taser enables LGTM to find

136 otherwise missed potential security problems.

To better understand the quality of the added alerts, we randomly

sample 30 of the new alerts (five for rules with five or more results,

and all results for the other rules). We find that 24 of them are

true positives in the sense that they exhibit flow from a source to a

sink.
5
Of the six false positives, five are due to imprecision of the

static analysis (and hence unrelated to Taser), and one is due to a

spurious additional sink extracted by Taser.

Figure 8 shows a simple example of a newly identified

alert for the js/path-injection rule, which originates from the

FineUploader/server-examples project from GitHub. The req

argument contains an HTTP request object, so the LGTM secu-

rity analysis considers req.params.uuid to be untrusted data since

it might originate from a malicious attacker. After being concate-

nated with another string, it is passed to the rimraf function, which

5
How many of these new results correspond to exploitable security vulnerabilities is a

different question, which we do not consider here.

104 var rimraf = require('rimraf ');

105 /* omitted */

106 function onDeleteFile(req, res) {

107 var uuid = req.params.uuid,

108 dirToDelete = uploadedFilesPath + uuid;

109 rimraf(dirToDelete , function(error) {

110 /* omitted */

111 });

112 }

Figure 8: Example of a new alert found based on a Taser-

inferred specification.

(recursively) deletes the file system path denoted by this string if it

exists. The value of req.params.uuid is not checked, so in particular

it could contain “..” components, allowing an attacker to delete

arbitrary files on the file system.

Even though the flow from source to sink is very simple, LGTM

does not flag this out-of-the-box, since it does not have a model

of the rimraf package, and its implementation is too complicated

for the static analysis to model as explained above. Our additional

sinks, however, identify the first parameter of rimraf as a taint sink

for js/path-injection, allowing LGTM to flag this code.

As an example of the use of propagation summaries, we notice

that four of the five new alerts for js/remote-property-injection

we examined make use of the propagation summaries for _.forEach,

a lodash function similar in style to _.forIn. These propagation

summaries describe flow through a callback parameter, underscor-

ing the importance of supporting such summaries.

RQ4: Comparison with Manually Created

Specifications

The standard LGTM security analysis suite already includes man-

ually written models of many popular npm packages, including

sinks and taint propagation rules. By examining our automatically

extracted taint specifications for overlap with these manually writ-

ten models, we find that 12 of our additional sinks and 40 of our

propagation summaries correspond to existing models. On the one

hand, this confirms that the specifications we extract are practically

relevant. On the other hand, it also shows that the vast majority of

the Taser-extracted specifications are not yet covered by manual

models.

As one example, our dynamic analysis correctly identifies the

first parameter of the single function exported by the cross-spawn

package as a sink for js/command-line-injection. LGTM includes

a manual model for this. Additionally, Taser also identifies an

analogous sink for the win-spawn package, a by now deprecated

predecessor of cross-spawn. LGTM does not include a model for

this, presumably because win-spawn is less popular than cross-spawn,

and the LGTM analysis authors focused on popular packages in

writing their models. Our automated approach is not limited by such

considerations and can hence provide a much broader coverage.

7 DISCUSSION

In this section we present limitations of our work, and we discuss

how automatically inferred taint specification can improve the

current security practices in the JavaScript community.

https://lgtm.com/rules/1505761706145
https://lgtm.com/rules/1507594256322
https://lgtm.com/rules/1971530250
https://lgtm.com/rules/1506011407937
https://lgtm.com/rules/2025670640
https://lgtm.com/rules/1506297857466
https://lgtm.com/rules/1506080936926
https://lgtm.com/rules/2022121412
https://lgtm.com
https://lgtm.com/rules/1971530250
https://lgtm.com/rules/1971530250
https://lgtm.com/rules/1971530250
https://lgtm.com/rules/1506297857466
https://lgtm.com/rules/1505761706145
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113 var printer = require("printer");

114 var benignInput = "printerName";

115 printer.printDirect({

116 data: "Test",

117 printer: benignInput ,

118 success: function (jobID) {

119 console.log("sent to printer with ID: " + jobID);

120 },

121 error: function (err) {

122 console.log(err);

123 }

124 });

Figure 9: Benign input for the vulnerability described in

npm advisory number 27.

7.1 Limitations

Taser is affected by the well-known limitations of dynamic anal-

ysis, i.e., one can analyze only code that is executed. Therefore,

adequate test coverage is essential for effectively extracting taint

specifications. Even though in our evaluation we do not directly

measure or aim to increase coverage for the used test suites, by an-

alyzing several clients of a given library, we increase the chance of

observing multiple realistic use cases of the library. Our hypothesis

is that these inputs are representative for most of the library usages

in the wild. Related work employs similar assumptions [29, 31].

In the currentwork, we do not consider implicit flowswhichwere

shown to have limited value for detecting integrity issues in server-

side JavaScript [43]. However, future work should evaluate whether

this assumption also holds for extracting taint specifications.

In our evaluation, we judge the usefulness of the extracted sum-

maries by showing that they improve an existing static analysis.

Similarly to the work of Clapp et al. [9], future work should perform

a more extensive set of experiments in which the quality of the

extracted specifications is directly evaluated, e.g., by extensively

comparing with manually written specifications.

7.2 Comparison with Coarse-Grained

Warnings

The current security practice in the npm community, as imple-

mented, e.g., in the npm audit tool, is to warn users whenever they

are relying on a module with a known vulnerability. This approach

suffers from two limitations. First, it is limited to previously known

and reported vulnerabilities. Second, it often causes spurious warn-

ings, as a warning is issued for every package that depends on a

vulnerable module, independently of whether the first module’s

use of the second module is affected by the vulnerability.

We show that our approach can help address both these limita-

tions. First, one can use Taser to automatically find vulnerabilities,

i.e., unsanitized, undocumented additional sinks. To evaluate the

effectiveness of this approach, we run Taser using benign inputs

for 24 vulnerable packages aggregated by related work [42]. Our

approach finds additional sinks in 11 of the 24 packages. Limita-

tions of the existing policy, i.e., missing sources, and insufficient

modeling of arrays are the reasons why Taser does not find the

remaining sinks.

Second, Taser-extracted specifications can help identify the prob-

lematic entry point of a vulnerable library. This can reduce the false

positive rate of the npm audit solution by only reporting an alarm

when user-controlled values can reach that entry point. While im-

plementing a more precise replacement for npm audit based on

Taser-extracted specifications is out of the scope of this work, we

illustrate its potential effectiveness with the vulnerability in Fig-

ure 9. The example shows benign inputs passed to a module that

suffers from a known vulnerability.
6
Taser infers the following

additional sink for the vulnerable module:

(member printer (parameter 0 (member printDirect
(root printer))))

Instead of alerting all users of the printermodule, as npm audit
would do, the extracted specification could help raise an alarm only

for users that call the vulnerable entry point with a non-constant

string value. Similarly to Synode [42], an improvement over the

current npm audit tool could check whether the value passed at

the entry point is statically computable, and raise an alarm only if

that is not the case. As illustrated by this example, Taser can help

reduce the false positives of the existing technique by only alerting

developers when necessary. In addition to an npm audit-like tool,
IDEs could also alert developers that specific entry points should

be treated as sinks.

8 RELATEDWORK

Specifications of libraries and frameworks. The idea of using pre-

generated specifications to aid static analysis of library and frame-

work code has been pursued previously [3, 5, 9, 21, 34]. The only

other work that uses a dynamic analysis to infer taint specifications

is the technique by Clapp et al. [9], which infers specifications for

the Android SDK. Our work differs in multiple ways. First, we intro-

duce the idea of membrane-based, multi-module analysis, allowing

Taser to infer specifications for all modules used directly or indi-

rectly by a client. In contrast, Clapp et al. [9] infer specifications

from a client’s usage of a single framework. Second, we use a fine-

grained specification mechanism that can track flows at the level

of individual properties and can express flows via callbacks, while

their specifications are coarse-grained, i.e., only tracking flows be-

tween parameters and return values. Finally, our analysis accounts

for the dynamic nature of JavaScript, e.g., using the star expression

(*) as described in Section 3.2.

Taint analysis. Taint analysis [10] has been used for checking

security properties [4, 18, 32, 45] and other analysis problems [15,

22]. In particular, there are both static [33] and dynamic [24, 28]

taint analyses for JavaScript. Taint specifications inferred with a

Taser-like approach could in principle be plugged into any static

taint analysis that involves third-party modules. To the best of our

knowledge, we are the first to present such an approach for static

taint analysis for JavaScript. To facilitate the use of taint analysis for

checking security properties, some work proposes to infer which

functions to consider as sources, sinks, and sanitizers [7, 36]. In

contrast, Taser infers specifications that summarize flows through

entire third-party modules.

JavaScript security. Previous work has shown that there is a wide
range of vulnerabilities in JavaScript software in general and for

the Node.js platform in particular, e.g., injection vulnerabilities [42],

regular expression-based denial of service vulnerabilities [12, 41],

6https://www.npmjs.com/advisories/27

https://www.npmjs.com/advisories/27
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and implementation issues in Node.js [6]. Many existing mitigation

techniques rely on some form of dynamic enforcement [1, 13, 17,

42, 46]. Since even a small runtime overhead is often unacceptable,

especially for server-side applications, our work instead aims at

improving the static detection of vulnerabilities, e.g., via the LGTM

analysis tool used in our evaluation. Zimmermann et al. [47] have

shown that npm modules depend on many (79, on average) other

npm modules, which become part of a module’s attack surface.

The Taser-inferred taint specifications enable a static analysis to

consider such third-party modules without relying on manually

created specifications or whole-program analysis.

Membranes. The membrane pattern, introduced by Miller [30],

has been applied in several settings [11, 17, 25, 29–31]. The idea is

to separate two object graphs, such that operations taking place on

the boundary between the graphs can be captured and potentially

modified. Taser usesmembranes at the boundary between amodule

and a client, and between different modules, to capture taint flows

between them.

Coarse-grained alerts. Some tools, most prominently npm audit7

and Snyk
8
, warn developers about known vulnerabilities in any of

their dependencies. As discussed by Lauinger et al. [27], an impor-

tant limitation is that such tools do not analyze how dependencies

are used, and will warn even about vulnerabilities in code that a

client does not use, or not use in a vulnerable way. A more precise

analysis, e.g., based on specifications inferred by Taser, avoids the

inevitable false positives caused by coarse-grained alerts.

JavaScript program analysis. The dynamic and reflective nature

of JavaScript makes it difficult to construct sound, whole-program

static analyses that scale to large real-world applications [2, 14, 23,

26, 33, 40, 41]. For that reason, much research has been devoted to

constructing more pragmatic bug-detection tools [1, 8, 16, 19, 20,

24, 35, 37, 38, 43]. Some frameworks facilitate the implementation

of dynamic JavaScript analyses [39, 44], including NodeProf [44]

that Taser builds upon.

9 CONCLUSION

The massive use of third-party libraries in modern JavaScript web

development calls for new techniques to discover security vul-

nerabilities. Modular static taint analysis is a powerful approach,

as demonstrated by the successful commercial tool LGTM, but it

critically relies on taint specifications of the libraries being used.

Writing such specifications manually is demanding and error-prone,

so automated solutions are needed. This work presents such a solu-

tion. It combines and adapts a number of ideas from previous work,

in particular the idea of inferring information flow specifications

using dynamic analysis [9], the membrane mechanism [11, 30], the

use of test suites of open-source library clients, and the notion of

dynamic access paths [29].

Our implementation and experiments demonstrate that this de-

sign is able to automatically detect non-trivial and accurate taint

flow specifications in widely used Node.js modules, which enables

an existing static analyzer, LGTM, to discover many previously

unknown security vulnerabilities. We believe this approach is a

7https://docs.npmjs.com/cli/audit
8https://snyk.io/

promising alternative to the current coarse-grained security tools

like npm audit that only consider the package dependency struc-

ture but completely ignore the dataflow. Our next step is to extend

the implementation with support for more testing frameworks, and

then apply the approach in production. Thereby we can gain experi-

ence with its use in practice and possibly refine the expressiveness

of the taint specifications to further increase the ability to detect

vulnerabilities in real-world JavaScript applications.
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