
Introduction Empirical Study Results Applications Conclusions

Nomen est Omen: Exploring and Exploiting Name
Similarities between Arguments and Parameters

Hui Liu 1 Qiurong Liu 1 Cristian-Alexandru Staicu 2

Michael Pradel 2 Yue Luo 1

1Beijing Institute of Technology

2Technical University of Darmstadt

May 23, 2016

1/15

Introduction Empirical Study Results Applications Conclusions

Motivation

How we see the source code:

void writeVersionFile(File file, float version) {
DataOutputStream dos = new DataOutputStream(file);
dos.writeFloat(version);
dos.close();

}

How most analyses see the source code:

void a(A b, B c) {
C d = new C(b);
d.e(c);
d.f();

}

1/15

Introduction Empirical Study Results Applications Conclusions

Motivation

How we see the source code:

void writeVersionFile(File file, float version) {
DataOutputStream dos = new DataOutputStream(file);
dos.writeFloat(version);
dos.close();

}

How most analyses see the source code:

void a(A b, B c) {
C d = new C(b);
d.e(c);
d.f();

}

2/15

Introduction Empirical Study Results Applications Conclusions

Motivation

Main Idea

Use similarities between arguments and parameters names in
program analysis.

Parameters (method definition)

void writeVersionFile(File file, float version) {...}

Arguments (call site)

writeVersionFile(file, version);

writeVersionFile(myFile, currentVersion);

writeVersionFile(target, v);

2/15

Introduction Empirical Study Results Applications Conclusions

Motivation

Main Idea

Use similarities between arguments and parameters names in
program analysis.

Parameters (method definition)

void writeVersionFile(File file, float version) {...}

Arguments (call site)

writeVersionFile(file, version);

writeVersionFile(myFile, currentVersion);

writeVersionFile(target, v);

3/15

Introduction Empirical Study Results Applications Conclusions

This talk

Empirical evidence that:

names of arguments and parameters are similar

dissimilar names can be filtered out

Two applications:

anomaly detection

arguments recommendation

[Allamanis et al., FSE2014], [Allamanis et al., FSE2015],
[Butler et al. CSMR2010], [Pradel and Gross, ISSTA2011]

3/15

Introduction Empirical Study Results Applications Conclusions

This talk

Empirical evidence that:

names of arguments and parameters are similar

dissimilar names can be filtered out

Two applications:

anomaly detection

arguments recommendation

[Allamanis et al., FSE2014], [Allamanis et al., FSE2015],
[Butler et al. CSMR2010], [Pradel and Gross, ISSTA2011]

4/15

Introduction Empirical Study Results Applications Conclusions

Empirical Study

Are argument and parameter names similar?

Yes, in 31% of the cases even identical.

Why are some dissimilar?

Mostly because of short and generic names.

Can we eliminate dissimilar names?

Yes, a significant part of them.

Do developers pick the most similar arguments?

Yes, in most of the cases.

4/15

Introduction Empirical Study Results Applications Conclusions

Empirical Study

Are argument and parameter names similar?

Yes, in 31% of the cases even identical.

Why are some dissimilar?

Mostly because of short and generic names.

Can we eliminate dissimilar names?

Yes, a significant part of them.

Do developers pick the most similar arguments?

Yes, in most of the cases.

4/15

Introduction Empirical Study Results Applications Conclusions

Empirical Study

Are argument and parameter names similar?

Yes, in 31% of the cases even identical.

Why are some dissimilar?

Mostly because of short and generic names.

Can we eliminate dissimilar names?

Yes, a significant part of them.

Do developers pick the most similar arguments?

Yes, in most of the cases.

4/15

Introduction Empirical Study Results Applications Conclusions

Empirical Study

Are argument and parameter names similar?

Yes, in 31% of the cases even identical.

Why are some dissimilar?

Mostly because of short and generic names.

Can we eliminate dissimilar names?

Yes, a significant part of them.

Do developers pick the most similar arguments?

Yes, in most of the cases.

5/15

Introduction Empirical Study Results Applications Conclusions

Methodology and Setup

60 popular Java programs >600,000 arguments

Retrieve parameters using JDT’s static solving

lexSim(arg , par) = |included terms(arg ,par)|+|included terms(par ,arg)|
|terms(arg)|+|terms(par)|

lexSim(”length”, ”inputLength”) = 1+1
1+2 = 0.67

5/15

Introduction Empirical Study Results Applications Conclusions

Methodology and Setup

60 popular Java programs >600,000 arguments

Retrieve parameters using JDT’s static solving

lexSim(arg , par) = |included terms(arg ,par)|+|included terms(par ,arg)|
|terms(arg)|+|terms(par)|

lexSim(”length”, ”inputLength”) = 1+1
1+2 = 0.67

6/15

Introduction Empirical Study Results Applications Conclusions

Are Argument and Parameter Names Similar?

 0%

10%

20%

30%

40%

50%

60%

[0.0,
0.1)

[0.1,
0.2)

[0.2,
0.3)

[0.3,
0.4)

[0.4,
0.5)

[0.5,
0.6)

[0.6,
0.7)

[0.7,
0.8)

[0.8,
0.9)

[0.9,
1.0)

1

Similarity

7/15

Introduction Empirical Study Results Applications Conclusions

Why are Some Names Dissimilar?

Short identifiers: 40.5% of the dissimilar pairs have a parameter
of length < = 3

Generic identifiers: index, item, key, value account for
14% of dissimilarities

7/15

Introduction Empirical Study Results Applications Conclusions

Why are Some Names Dissimilar?

Short identifiers: 40.5% of the dissimilar pairs have a parameter
of length < = 3

Generic identifiers: index, item, key, value account for
14% of dissimilarities

8/15

Introduction Empirical Study Results Applications Conclusions

Can We Eliminate Dissimilar Names?

Example of code containing generic identifier names1:

public int maxValue(int array[]){
List<Integer> list = new ArrayList<Integer>();
for (int i = 0; i < array.length; i++) {

list.add(array[i]);
}

return Collections.max(list);
}

Idea

Use a corpus of programs to infer parameters names that are
likely to appear in dissimilar pairs.

1stackoverflow, question 1806816

8/15

Introduction Empirical Study Results Applications Conclusions

Can We Eliminate Dissimilar Names?

Example of code containing generic identifier names1:

public int maxValue(int array[]){
List<Integer> list = new ArrayList<Integer>();
for (int i = 0; i < array.length; i++) {

list.add(array[i]);
}

return Collections.max(list);
}

Idea

Use a corpus of programs to infer parameters names that are
likely to appear in dissimilar pairs.

1stackoverflow, question 1806816

9/15

Introduction Empirical Study Results Applications Conclusions

Pruning Low-Similarity Parameters

 0%

10%

20%

30%

40%

50%

60%

[0.0,
0.1)

[0.1,
0.2)

[0.2,
0.3)

[0.3,
0.4)

[0.4,
0.5)

[0.5,
0.6)

[0.6,
0.7)

[0.7,
0.8)

[0.8,
0.9)

[0.9,
1.0)

1

Similarity

Before Filtering After Filtering

;

10/15

Introduction Empirical Study Results Applications Conclusions

Do Developers Pick the Most Similar Arguments?

Compare argument with potential alternatives.

Findings

50% of the arguments have no alternatives
13.5% are strictly more similar than any other alternative
if filtering out is applied, this number increases two times
6.9% have a more similar alternative

10/15

Introduction Empirical Study Results Applications Conclusions

Do Developers Pick the Most Similar Arguments?

Compare argument with potential alternatives.

Findings

50% of the arguments have no alternatives
13.5% are strictly more similar than any other alternative
if filtering out is applied, this number increases two times
6.9% have a more similar alternative

11/15

Introduction Empirical Study Results Applications Conclusions

Application 1: Anomaly Detection

Idea

An anomaly is a low-similarity pair that has a potential
alternative that would significantly increase the similarity.

Issue in Lightweight Java Game Library:

void writeVersionFile(File file, float version) {
...

}
File versionFile;
...
writeVersionFile(dir, latestVersion);

11/15

Introduction Empirical Study Results Applications Conclusions

Application 1: Anomaly Detection

Idea

An anomaly is a low-similarity pair that has a potential
alternative that would significantly increase the similarity.

Issue in Lightweight Java Game Library:

void writeVersionFile(File file, float version) {
...

}
File versionFile;
...
writeVersionFile(dir, latestVersion);

11/15

Introduction Empirical Study Results Applications Conclusions

Application 1: Anomaly Detection

Idea

An anomaly is a low-similarity pair that has a potential
alternative that would significantly increase the similarity.

Issue in Lightweight Java Game Library:

void writeVersionFile(File file, float version) {
...

}
File versionFile;
...
writeVersionFile(dir, latestVersion);

12/15

Introduction Empirical Study Results Applications Conclusions

Anomaly Detection: Results

Ground truth: 14 bugs in the history of the subject programs

Approach detected:

6 / 14 and three additional ones

127 renaming opportunities

Average precision: 80%

13/15

Introduction Empirical Study Results Applications Conclusions

Application 2: Arguments Recommendation

Idea

Suggest the most similar potential alternative.

13/15

Introduction Empirical Study Results Applications Conclusions

Application 2: Arguments Recommendation

Idea

Suggest the most similar potential alternative.

14/15

Introduction Empirical Study Results Applications Conclusions

Arguments Recommendation: Results

Analyzed arguments in four applications.

Recommended 1,588 arguments with a precision of 83%.

Missing recommendations:

complex expressions

literals

typecasts

15/15

Introduction Empirical Study Results Applications Conclusions

Conclusions

Empirical evidence that:

names of arguments and parameters are similar

short and generic parameters cause dissimilarity

dissimilar names can be filtered out

developers tend to pick the most similar arguments

Two applications:

anomaly detection

arguments recommendation

Promising opportunities for more name-based techniques

15/15

Introduction Empirical Study Results Applications Conclusions

Conclusions

Empirical evidence that:

names of arguments and parameters are similar

short and generic parameters cause dissimilarity

dissimilar names can be filtered out

developers tend to pick the most similar arguments

Two applications:

anomaly detection

arguments recommendation

Promising opportunities for more name-based techniques

15/15

Introduction Empirical Study Results Applications Conclusions

Conclusions

Empirical evidence that:

names of arguments and parameters are similar

short and generic parameters cause dissimilarity

dissimilar names can be filtered out

developers tend to pick the most similar arguments

Two applications:

anomaly detection

arguments recommendation

Promising opportunities for more name-based techniques

	Introduction
	Empirical Study
	Results
	Applications
	Conclusions

