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ABSTRACT
Programmer-provided identifier names convey information
about the semantics of a program. This information can
complement traditional program analyses in various soft-
ware engineering tasks, such as bug finding, code comple-
tion, and documentation. Even though identifier names ap-
pear to be a rich source of information, little is known about
their properties and their potential usefulness. This paper
presents an empirical study of the lexical similarity between
arguments and parameters of methods, which is one promi-
nent situation where names can provide otherwise missing
information. The study involves 60 real-world Java pro-
grams. We find that, for most arguments, the similarity
is either very high or very low, and that short and generic
names often cause low similarities. Furthermore, we show
that inferring a set of low-similarity parameter names from
one set of programs allows for pruning such names in another
set of programs. Finally, the study shows that many argu-
ments are more similar to the corresponding parameter than
any alternative argument available in the call site’s scope.
As applications of our findings, we present an anomaly de-
tection technique that identifies 144 renaming opportunities
and incorrect arguments in 14 programs, and a code recom-
mendation system that suggests correct arguments with a
precision of 83%.

CCS Concepts
•Software and its engineering → Software develop-
ment techniques; Maintaining software;

Keywords
Empirical study, name-based program analysis, identifier
names, static analysis, method arguments

1. INTRODUCTION
Identifier names chosen by developers convey information

about the semantics of a program [21], but many program
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analyses ignore identifier names. As a result, running an
analysis on a human-written program with meaningful iden-
tifier names and on an equivalent program where all iden-
tifiers are consistently replaced with arbitrary strings gives
exactly the same result. However, ignoring names discards
a valuable source of information that may provide hints
that are otherwise unavailable to an analysis. To exploit
this information, recent work uses identifier names to infer
API specifications [33, 25], to identify mismatches between
a method name and the method’s implementation [16], to
synthesize code completions [29], to predict syntactic and
semantic properties of programs [28], to suggest identifier
names [2, 3], and to detect incorrectly ordered method ar-
guments of the same type [26, 27].

Despite these recent approaches, little is known about
the properties of identifier names in real-world software and
about how one could exploit these properties. Are identifier
names that refer to semantically related values similar? Is
it possible to predict from identifier names which variable,
field, or method a developer will use next? How prevalent
are names that convey little or no semantic information,
such as generated variable names or very short names, and
is there a way to identify them? Addressing these questions
is valuable because it may pave the road for name-based
analyses that complement traditional program analysis. For
example, one could exploit the similarity of names to com-
plete pieces of code automatically, to warn developers about
anomalies that may correspond to code worth changing, or
to infer documentation from names.

This paper focuses on the lexical similarity of arguments
and parameters of methods, which is one prominent situ-
ation where identifier names may provide otherwise miss-
ing semantic links. We say argument to values passed to a
method at a call site, and we say parameter to the formal
parameter in the method’s definition. Since an argument
and its corresponding parameter often refer to the same in-
stance, we hypothesize that their names are often similar.

1.1 Research Questions
To evaluate this hypothesis, we conduct an empirical study

that addresses the following research questions:
RQ1 : How similar are argument names to the names of

their corresponding parameters? Answering this question
will help to decide whether exploring similarities between
argument names and parameter names is worthy.

RQ2 : How long are argument names and parameter names
in real-world Java programs, and how does the length relate
to their similarity? Answering this question may help es-
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timate how much confidence one can have into similarities
between names of particular lengths.

RQ3 : How often does an overriding method change the
parameter names compared to the names in the overridden
method? Answering this question helps estimate how often
comparing arguments to the parameter names of the stati-
cally resolved call target is sufficient, and how often consid-
ering the dynamic call target would yield different results.

RQ4 : Why are some arguments dissimilar to correspond-
ing parameters? Answering this question my help applica-
tions that exploit name similarities to ignore particular kinds
of dissimilarities.

RQ5 : If parameters with specific names, such as arg0,
are frequently assigned with dissimilar arguments in sample
applications, are parameters with the same name frequently
assigned with dissimilar arguments in other applications? If
yes, can we build a set of low-similarity parameters that are
likely to be assigned with dissimilar arguments? Answering
this question may help approaches that exploit the similarity
of names, such as name-based code completion or anomaly
detection, to reduce false positives by ignoring arguments
assigned to low-similarity parameters.

RQ6 : How often is the argument chosen by the devel-
oper more similar to the corresponding parameter than any
of its potential alternatives? Answering this question will
help to estimate the accuracy of approaches that exploit the
similarity of names, such as code completion.

1.2 Summary of Findings
To address these questions, we empirically study 609,489

named arguments in 60 popular open-source Java programs.
The main findings of the study are the following. For RQ1,
we find that the distribution of the lexical similarity is a U-
shape: the similarity is either extremely high or extremely
low. Many arguments (31%) exactly match their corre-
sponding parameter. In contrast, the majority of those argu-
ments that are not similar to their corresponding parameters
are very dissimilar (51% have a similarity of 0%).

For RQ2, we find that 84% of all argument names and 70%
of all parameter names have at least four characters. Al-
most all argument names (91%) and most parameter names
(81%) are composed of at most three terms. On average over
all studied parameters, the similarity to their arguments in-
creases with the length of parameter names and with the
number of terms used in the parameter name. However,
there is no strong correlation between the length of names
and the similarity between individual pairs of arguments and
parameters. These results suggest that one cannot infer the
similarity between an argument and a parameter from the
length of their names.

For RQ3, we find that most of all overriding methods
(92%) have exactly the same list of parameter names as
their overridden method. That is, comparing arguments to
the parameters of a statically computed call target is suffi-
cient in most cases, even though a call may be dispatched
to a different target method at runtime.

For RQ4, we find that the main reason for dissimilar argu-
ments and parameters are short parameter names. Among
the 310,814 named arguments whose similarity with their
corresponding parameter is zero, 23% are assigned to param-
eters named with a single character, and 42% of them are
assigned to parameters named with no more than three char-
acters. Another reason for dissimilar pairs of arguments and

parameters are generic data collection operations. Among
the 310,814 named arguments whose lexical similarity with
their corresponding parameters is zero, 14% are assigned to
parameters named index, item, key, or value. Such names
are common in methods manipulating data collections.

For RQ5, we find that most dissimilar pairs of argument
names and parameters (75%) are due to a small set of pa-
rameters that occur again and again across programs, such
as arg0. That is, extracting a set of parameter names to
ignore from sample programs helps finding parameters that
are likely to be associated with dissimilar arguments in other
programs.

Finally, for RQ6, we find that most argument names (55%)
that are not associated with low-similarity parameters are
more similar to their corresponding parameter name than
any other argument that a programmer could use in the
current scope. The figure is even up to 78% for those ar-
guments whose lexical similarity with their corresponding
parameters is at least 0.67. That is, analyzing the similarity
of argument names and parameter names can help in de-
ciding which argument to use and in detecting incorrect or
otherwise suspicious arguments.

1.3 Applications
Our results suggest several research directions for exploit-

ing identifier names to support and further automate soft-
ware development tasks, and we explore two such directions.
First, we present a static anomaly detection technique that
warns about argument names that seem not to match their
corresponding parameter name. The basic idea is to report
a warning when the developer could use another argument
than the current one, and when this change would make the
argument name and parameter name significantly more sim-
ilar to each other. We apply the analysis to 10 programs,
where it finds 6 known incorrect arguments, 3 previously un-
known incorrect arguments, and 127 renaming opportunities
with a precision of 80%. Second, we present a name-based
recommendation system that suggests an argument while a
developer writes code that calls a method. The basic idea
is to recommend an argument from a set of potential ar-
guments so that the recommended argument is the most
similar to the corresponding parameter. The approach rec-
ommends correct arguments with a precision of 83%.

In summary, this paper contributes the following:

• The first extensive empirical study of argument names
and parameter names in real-world Java programs.

• Empirical evidence showing that most argument names
and parameter names are either similar to each other
or can be easily filtered, and that names help in decid-
ing which argument to assign to a parameter.

• Two practical applications of our findings, anomaly
detection and argument recommendation, along with
experimental results that show that the applications
are effective.

2. SETUP OF THE STUDY

2.1 Methodology
To study the lexical similarity of identifier names involved

in method calls, we compare named method arguments and



method parameters with a string similarity metric. The
first step of the study is to extract identifier names from
the source code of the subject applications. To this end, an
AST-based, static analysis extracts from each formal param-
eter in a method definition the identifier of the parameter,
called parameter name. Furthermore, the analysis extracts
at each call site the names of particular kinds of arguments,
called argument names. Specifically, the analysis considers
the following expressions that may be passed as arguments:

• For a variable, the argument name is simply the vari-
able name.

• For a call expression, the argument name is the name
of the called method. That is, we ignore the receiver
object and any arguments of the call. For example, if
the return value of a method call student.firstName()
is passed as an argument, then the argument name is
firstName.

• For a field access expression, the argument name is the
name of the field, again ignoring the receiver object.
For example, if the argument is student.id, then the
argument name is id.

• For the this keyword, the argument name is the name
of the class of which this is an instance. For example, if
in a method invocation print(this) the argument this
refers to an instance of class Student then the argu-
ment name is Student.

All other arguments, such as complex expressions, are ig-
nored in the study.

To compare argument names with parameter names, the
analysis matches each call site with a method definition.
This matching is based on the statically known target method
to which the call resolves. As a result, each parameter name
is associated with a set of argument names.

Based on the extracted argument and parameter names,
we compute the similarity of two names as follows. To
measure the lexical similarity between names, we decom-
pose each identifier name into a sequence of terms, noted as
terms(arg). The decomposition is based on underscores and
capital letters, assuming that the name follows the popular
camel case or snake case naming convention. We measure
the lexical similarity between argument arg and parameter
par as follows:

lexSim(arg, par) =

|comterms(arg, par)|+ |comterms(par, arg)|
|terms(arg)|+ |terms(par)| (1)

comterms(n1, n2) is the longest subsequence of terms(n1),
where each term in the subsequence appears in terms(n2).
For example, lexSim(“length”, “inputLength”) = 1+1

1+2
=

67% and lexSim(“fieldLength”, “fieldLength”) = 2+2
2+2

=

100%. The measure may assign a similarity of 1 to non-
equal names, such as “fooBar” and “barFoo”, which may
appear unintuitive but is not a problem in practice.

2.2 Subject Applications
We search for the most popular open-source Java applica-

tions from SourceForge, and select the top 60 resulting ap-
plications for investigation. Sizes of such applications vary
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Figure 1: Distribution of lexical similarity between
arguments and parameters

from 2,893 to 570,384 non-blank lines of source code. In to-
tal, the subject applications are composed of 5,841,635 lines
of code.

From these subject applications, we extract all named ar-
guments. In total, we get 609,489 named arguments from
these applications. For each such argument, we compute the
lexical similarity between it and its corresponding parameter
according to Formula 1.

3. RESULTS OF THE STUDY

3.1 RQ1: Distribution of Lexical Similarity
To address the question how similar argument and pa-

rameter names are, we compute the similarity between all
argument names and the names of their corresponding pa-
rameters. Figure 1 shows the distribution of the similarity.
The figure shows that the distribution has a U-shape: sim-
ilarity is either very high or very low. In 31% of all cases,
the similarity is equal to 1, whereas in 51% of all cases, the
similarity is 0 (i.e., the names share no common terms).

From the figure, we also observe that the number of argu-
ments whose similarity with corresponding parameters be-
longs to [0.1,0.2), [0.2,0.3), [0.3,0.4), [0.7,0.8), and [0.9,1.0)
is extremely small. One of the reasons is that the similar-
ity is computed based on terms, and thus the similarity is
discrete. If two names contain no common terms, the sim-
ilarity is zero. Otherwise, the numerator of Formula 1 is
at least 2. That is, to obtain a similarity smaller than 0.2,
the denominator must be greater than 2/0.2 = 10. How-
ever, it is not so common that the length of two identifier
names is longer than 10 terms. Consequently, the number
of arguments whose similarity with corresponding param-
eters belongs to [0.1,0.2) is extremely small. The same is
true for other intervals, e.g., [0.2,0.3), [0.3,0.4), [0.7,0.8),
and [0.9,1.0).

We conclude from these results that the similarity of ar-
gument and parameter names is worth exploring further,
because a significant part of all arguments is very similar to
its corresponding parameter.

3.2 RQ2: Length of Names
To address the question how long argument names and

parameter names in real-world Java programs are, we mea-
sure for each name the number of characters and the num-
ber of terms in the name. Figure 2 shows the results. The
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Figure 2: Length of argument names and parameter
names.
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Figure 3: Correlation between length of names and
average similarity (with polynomial trendlines)

left-hand side of the figure shows that most names are com-
posed of no more than 10 characters. For example, 63%
of the argument names contain 3 to 10 characters. 80% of
the parameter names contains no more than 8 characters.
The right-hand side of the figure shows that most names are
composed of a small number of terms. 99% of the parame-
ter names and 96% of the argument names are composed of
at most three terms. Single-term names account for 45% of
argument names and 73% of parameter names.

The average length of argument names (1.7 terms) is higher
than that of parameter names (1.3 terms). One of the rea-
sons why argument names contain more terms are method
invocations whose return value is passed as an argument.
For a single-term parameter, e.g., rectangle, an argument
could be a method invocation, e.g., createRectangle().

We also investigate whether the length of parameter names
or argument names influences the similarity between argu-
ments and parameters. The results are presented in Fig-
ure 3. The figure shows that the average similarity increases
when the length of parameter names increase. In contrast,
the similarity decreases while the length of argument names
increases. Even though, on average over all studied argu-
ments and parameters, the length of names influences the

similarity, the length of parameter names and argument
names is only weakly correlated to similarity for individual
pairs of arguments and parameters. The correlation coeffi-
cient is 0.15 (parameter names) and -0.18 (argument names),
respectively. One of the reasons for this seemingly contra-
dictory result is that even for the argument (or parameter)
names of the same length, the similarity between arguments
and parameters may vary dramatically.

We conclude from these results that the length of parame-
ter names does influence the similarity between their names.
This finding suggests that developers should aim for expres-
sive parameter names with multiple terms (if appropriate).

3.3 RQ3: Parameter Names of Overridden
Methods

For this study, we resolve invoked methods based on the
statically known type of the receiver object. However, static
analysis may resolve method invocations incorrectly because
the dynamic receiver type may be a subtype of the static
receiver type that overrides the called method. To investi-
gate to what extent such mis-resolution may influence the
measured similarity between arguments and parameters, we
measure how often overriding methods use different param-
eter names than the overridden method.

In total over all applications, we find that most of the
overriding methods (92%) have exactly the same parameter
list (including the same parameter names) as the methods
they override. In other words, in most cases the fact that
static method resolution may be incorrect does not influence
the measured similarity between arguments and parameters.

3.4 RQ4: Reasons for Dissimilarity
To address the question why some arguments are dissimi-

lar to their corresponding parameter, we further analyze all
pairs of argument name and parameter name that have a
similarity of 0. In total, there are 310,814 such pairs. We
randomly sample 200 of them and manually inspect them.
Moreover, we validate the results of the manual inspection
on the whole population of 310,814 pairs of names.

The manual analysis leads to two findings: First, very
short parameter names are the major reason for the dis-
similarity between arguments an parameters. 21% of the
arguments are assigned to parameters named with a single
character, e.g., s and i, and 40.5% of the arguments are as-
signed to parameters named with at most three characters.
Such short parameter names often convey little semantics
and therefore cause dissimilarities with the corresponding
argument names.

Second, generic parameter names of methods of collection
classes are another reason for the dissimilarity between argu-
ments and parameters. 14% of the arguments are assigned
to parameters named index, item, key, or value. Such pa-
rameter names are popular in methods that manipulate data
collections. Although such parameter names are meaning-
ful, their corresponding arguments are usually dissimilar to
them because their arguments are concrete value or indexes.
For example, an invocation of method List.add(int in-

dex, Object value) may be add(i, newElement).
To investigate whether the analysis results on the 200 sam-

ple arguments can be generalized, we validate the results on
the entire population of argument names that have no simi-
larity with the corresponding parameter name. The valida-
tion results are as follows:



• 71,499 (23%) of the 310,814 named arguments were
assigned to parameters named with a single character.
130,708 (42%) out of the 310,814 named arguments
were assigned to parameters named with no more than
3 characters. These data are similar to the analysis
results on the sample.

• 36,886 (12%) of the 310,814 named arguments were
assigned to index, item, key, or value, which is similar
to the analysis results on the sample.

We conclude from the results that short parameter names
and generic names are main reasons for dissimilarities be-
tween argument names and parameter names. This find-
ing can benefit applications of name similarities, which may,
e.g., ignore such parameters.

3.5 RQ5: Filtering Parameters with Low
Similarity

The following addresses the question whether one can
build a set of low-similarity parameters from a corpus of
sample applications. We present a technique for computing
such a set and assess the effect of filtering pairs of argument
names and low-similarity parameter names.

Given a corpus of sample applications, our approach for
identifying low-similarity parameters has three steps. First,
we cluster all argument names in the sample applications
by their corresponding parameter names. If the parameters
associated with two arguments have the same name, then
we assign both arguments into the same cluster. That is,
each cluster is associated with a unique parameter name.
Second, for each cluster, we calculate the average similarity
s between arguments in this cluster and their correspond-
ing parameters. Finally, if the average similarity s of a
cluster is smaller than 0.5, we add the parameter name as-
sociated with this cluster to the set of low-similarity pa-
rameters. For example, for two calls m(a,x) and m(a,y)

of the method m(A a, B b), we extract two clusters Ca =
[a, a] and Cb = [x, y]. The average similarities for Ca and
Cb are avg(lexSim(“a”, “a”), lexSim(“a”, “a”)) = 1 and
avg(lexSim(“x”, “b”), lexSim(“y”, “b”)) = 0, respectively.
Hence, we add b to the set of low-similarity parameters.

To assess to what extent extracting low-similarity param-
eters from sample programs can help find parameters that
are likely to be associated with dissimilar arguments in other
programs, we carry out a k-fold cross-validation on the 60
subject applications (k=6). The applications are randomly
partitioned into 6 groups, notated as Sagi (i = 1 . . . 6),
where each group is composed of 10 subject applications.
For the ith cross-validation, we consider all subject appli-
cations except for those in Sagi as the corpus of training
applications, and we consider the applications in Sag1 as
the validation applications.

After identifying low-similarity parameters from a corpus
of sample applications, we compute all argument names in
the remaining applications whose corresponding parameters
are low-similarity parameters. We call such arguments fil-
tered out arguments. Figure 4 shows the distribution of
the similarity between filtered out arguments and their cor-
responding parameters. The figure shows that for most
(73% on average) of the filtered out arguments the simi-
larity between them and their corresponding parameters is
zero. Note that this percentage is significantly higher than
when considering all arguments (Figure 1). The observation

Table 1: Influence of ignoring arguments associated
with low-similarity parameters.

Similarity Arguments (n1)
Filtered out

arguments (n2)
n2/n1

[0.0, 0.1) 310,814 233,311 75%
[0.1, 0.2) 4 0 0%
[0.2, 0.3) 1,059 300 28%
[0.3, 0.4) 2,481 527 21%
[0.4, 0.5) 8,799 1,919 22%
[0.5, 0.6) 30,707 9,821 32%
[0.6, 0.7) 53,023 15,947 30%
[0.7, 0.8) 344 4 1%
[0.8, 0.9) 10,827 730 7%
[0.9, 1.0) 55 0 0%
1 191,376 56,849 30%

Total 609,489 319,408 52%
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Figure 5: Distribution of similarity parameters
and arguments that are not associated with low-
similarity parameters.

holds in all of the six rounds of cross-validations regardless
of the changes on both training data and validation data.

The above results show that low-similarity parameters are
an effective means for filtering arguments across applica-
tions. In the remainder if the paper, we use low-similarity
parameters computed from all subject applications. Table 1
illustrates how filtering out arguments associated with low-
similarity parameters changes the distribution of similarity
between arguments and parameters. From the table, we ob-
serve that arguments that are less similar to their parameters
are more likely to be filtered out. For example, the filtering
removes 75% of all arguments whose similarity with their pa-
rameters is zero, whereas the filtering removes only 29% of
all arguments whose similarity with parameters is not zero.

Figure 5 shows the distribution of similarity between pa-
rameters and arguments that are not filtered out arguments.
By comparing Figure 5 with Figure 1, we observe that the
distribution of lexical similarity between arguments and pa-
rameters has been reshaped dramatically by filtering based
on low-similarity parameters: The ratio of arguments that
are dissimilar to their parameters decreases and the ratio of
arguments that are similar to their parameters increases.

We conclude from the results that computing low-similarity
parameters from a corpus of sample applications is an effec-
tive means to predict whether a parameter will be dissimilar
to its arguments. This finding enables approaches that ex-
ploit name similarities to improve their precision by ignoring
low-similarity parameters.
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Figure 4: Distribution of similarity between parameters and arguments associated with low-similarity pa-
rameters.

3.6 RQ6: Picking Among Alternative
Arguments

To address the question how similar the argument chosen
by the developer is to other available arguments, we compare
each argument against its potential alternatives. To this
end, we define which arguments could be used by a developer
and then compute which of these possible arguments is the
most similar to the parameter.

Definition 1. Potential alternatives of argument arg are:
• If arg is a local variable or a field of the enclosing class,

all fields of the enclosing class and local variables that
are available at the location are in the set of potential
alternatives.
• If arg is a field access or a method invocation without

arguments, then all field accesses and method invoca-
tions without arguments that have the same receiver
object are potential alternatives.
• If arg is a method invocation with arguments, method

invocations with the same receiver object and the same
arguments are in the set of potential alternatives.

For example, for an argument a.b.foo, the following are po-
tential alternatives: a.b.bar and a.b.getBar(). Likewise,
for a method invocation x.getSize(y), the method invoca-
tion x.length(y) is a potential alternative.

Replacing an argument with a potential alternative may
introduce syntactical errors or type errors. For example,
some alternatives may not be available in the current scope
(e.g., private fields), or their types may be incompatible with
the parameter’s type. We exclude such invalid potential al-
ternatives from the comparison, and define alternative argu-
ments as follows:

Definition 2. An alternative argument of argument arg is
a potential alternative that does not introduce new syntac-
tical or type errors while replacing arg.

Among the alternative arguments alt args, we call argu-
ments that have the greatest lexical similarity with the cor-
responding parameter par a most similar argument :

Definition 3. An alternative argument m alt ∈ alt args
is a most similar argument if for any alternative argument
any alt ∈ alt args, the following inequation holds:
lexSim(m alt, par) ≥ lexSim(any alt, par)

To investigate how often the argument chosen by the devel-
oper is more similar to the corresponding parameter than
any of its potential alternatives, we compare each argument
name in the applications to the names of its alternative ar-
guments (especially the most similar argument).

50% of the 609,489 studied arguments do not have any
alternative arguments, i.e., they are the only argument that
is available in the scope of the method call and that is
type-compatible with the parameter. Among the 304,387
arguments with alternatives, only a small number (13.9%=
42,339/304,387) have an alternative that is more similar to
the parameter than the current argument. In other words,
86.1% of all arguments are among the most similar of all pos-
sible arguments. For 27%=82,158/304,387 of the arguments
with an alternative, the current argument is even strictly
more similar to the parameter than any of its alternatives.
This number increases to 78% for arguments whose similar-
ity with the corresponding parameter is greater than 0.667.

We also analyze the impact of filtering arguments asso-
ciated with low-similarity parameters (Section 3.6). After
the filtering, we keep 253,928 arguments, of which 100,696
(40%) have at least one alternative. Among these argu-
ments, 55%= 55,885/100,696 are more similar to the corre-
sponding parameters than any of their alternatives. Com-
pared to the ratio without filtering arguments (27%), the
ratio has increased by 104%=(55%-27%)/27%. One of the
reasons for the increase is that most of the arguments whose
similarity to their corresponding parameters is zero have
been filtered out based on low-similarity parameters.

We conclude from these results that approaches that try
to infer the most appropriate of all available arguments, such
as code completion or anomaly detection, have a high chance
to make accurate suggestions, in particular when filtering ar-
guments based on low-similarity parameters and thresholds
in minimal similarity.

4. APPLICATIONS
The results from Section 3 suggest several applications

that exploit the similarities between arguments and param-
eters. In this section, we explore two such applications.



4.1 Anomaly Detection
We present a static analysis that detects anomalies. The

main idea is to report arguments and parameters where the
current argument is significantly less similar to the param-
eter than an alternative. The analysis helps developers in
two ways. First, it reveals call sites that accidentally pass
incorrect arguments. Based on the analysis, the developer
can fix such bugs, possibly using the alternative argument
suggested by the analysis. Second, the analysis reveals argu-
ments and parameters that are correct but not appropriately
named, making the code unnecessarily hard to understand
and maintain. Developers should address such renaming
opportunities by choosing identifier names that convey the
semantics of the value that the identifier points to.

4.1.1 Approach and Implementation
Our approach for detecting incorrect arguments and re-

naming opportunities works as follows. For a given argu-
ment curArg the analysis at first checks the corresponding
parameter par against the set of low-similarity parameters
(Section 3.6). If par is in this set, which suggests that it is
often associated with dissimilar arguments, then the analysis
ignores the current argument and does not report any warn-
ing for it. Otherwise, the analysis computes the most similar
potential argument m alt (Definition 3). If m alt is differ-
ent from curArg and if the difference is above a threshold,
i.e., lexSim(m alt, par) − lexSim(curArg, par) ≥ β, then
the analysis reports a warning that suggests to replace the
current argument with m alt, or to rename the argument or
the parameter.

We implement the approach as an Eclipse plug-in that can
be used in two ways. First, to check arguments incremen-
tally and instantaneously, that is, whenever an argument is
introduced or modified. In this scenario, the plug-in identi-
fies and reports suspicious arguments immediately when the
developer introduces them and suggests to the developer an
alternative argument as a quick-fix. Second, to check all ar-
guments in a project at once. In this scenario, the plug-in
checks the whole application and reports all suspicious argu-
ments, along with the source code location of each problem
and suggestions for alternative arguments.

4.1.2 Calibration
The approach depends on a threshold β that decides when

to present warnings to the developer. In the following, we
present how we calibrate this threshold using three open-
source programs that are not among the subject applications
of the study: Domination (version 1.1.1.5), Openbravo POS
(version 2.30.2), and Dom4j (version 1.6.1). The applica-
tions cover different domains and are developed by different
developers.

To choose a reasonable threshold, we conservatively set
the threshold to β = 0.4, and apply the anomaly detection
to the three applications. We manually check every reported
warning and classify as a true positive if it points to a valid
renaming opportunity or to an incorrect argument. Based on
this classification, we compute the precision of the anomaly
detection as follows: Precision = Number of true positives

Number of reported warnings
.

For the 41 reported warnings, the similarity between ar-
guments and parameters is discrete, and it is either 0.4, 0.5,
0.6, 0.667, or 1. We observe that the precision increases
while β increases from 0.4 to 0.667, and it decreases slightly

1) Example from LWJGL (commit 029fa0e)
• Signature of called method:

void writeVersionFile(File file, float version)

• Incorrect method call:
writeVersionFile(dir, latestVersion);

• Fix applied in commit 3656b80:
writeVersionFile(versionFile, latestVersion);

2) Example from Mondrian (commit b583845)
• Signature of called method:

void putChildren(RolapMember member,
ArrayList children);

• Incorrect method call:
cache.putChildren(member, list);

• Fix applied in commit c26d9f2:
cache.putChildren(member, children);

Figure 6: Examples of incorrect arguments detected
by the anomaly detection.

after this point. Based on these results, we use β = 0.667 in
the remaining experiments.

4.1.3 Evaluation
We evaluate the effectiveness of the anomaly detection,

by manually identifying known problems related to incorrect
arguments in the history of the subject applications and by
checking whether the analysis detects these problems. To
identify known problems, we use ChangeDistiller [15] to ex-
tract source code changes that affect a single argument and
then manually filter those that replace an incorrect argu-
ment with a correct argument. Our methodology ensures
that each considered change is indeed a bug fix. We man-
ually inspect the commit messages and the changed code,
and we keep only those changes that definitely fix a bug
caused by using an incorrect argument. Most of the commit
messages of the selected changes are very explicit, e.g.,“code
cleanup: wrong parameter was used”, “fixed bug: upload-
rate is protocol+data”, or “Fix for bug #44277 - correctly
reference the crosstab id”. We consider all applications that
have a publicly accessible version control system (GIT, SVN,
or CVS), which yields 51 of the 60 applications. In total, we
identify 14 incorrect arguments in 11 of these applications.
Figure 6 lists two example bugs. We then apply the anal-
ysis to the buggy versions of the 11 applications, manually
inspect all reported anomalies, and classify each of them as
incorrect argument, renaming opportunity, or false positive.

We apply the anomaly detection to the 11 subject ap-
plications with known incorrect arguments (Table 2). The
approach successfully detects 6 of the 14 known incorrect ar-
guments. Besides such 6 incorrect arguments, the approach
also identifies 3 incorrect arguments that have been missed
by the manual identification based on ChangeDistiller, show-
ing that incorrect arguments are more frequent than our
ChangeDistiller-based search suggests.

In addition to the 9 incorrect arguments, the analysis re-
ports 127 renaming opportunities and 33 false positives. The
average precision of the analysis, i.e., the sum of the number
of incorrect arguments and renaming opportunities divided
by the total number of reported anomalies, is 80%.

The detected renaming opportunities fall into four cate-
gories:

• Abbreviations (42/127=33%). For example, the ap-
proach warns about an argument c whose correspond-



Table 2: Results of anomaly detection.

Application Size (LOC)
Known

Incorrect
Arguments

Reported
Warnings

Identified
Incorrect

Arguments

Identified
Renaming

Opportunities

False
Positives

Precision

LWJGL 32,137 1 6 4 1 1 100%
Mondrian 50,003 1 4 1 2 1 75%
DavMail 5,088 1 1 1 0 0 100%
VASSAL Engine 98,024 1 16 1 10 5 69%
Vuze-Azureus (version 1.8) 112,619 1 17 0 14 3 82%
Vuze-Azureus (version 1.17) 108,043 1 14 1 10 3 73%
Vuze-Azureus (version 1.126) 187,607 1 12 0 10 2 83%
iText 86,952 1 54 0 43 11 80%
JabRef 59,273 1 5 0 5 0 100%
PyDeva 1,281 1 1 1 0 0 100%
PyDevb 29,300 1 3 0 2 1 67%
Subsonic 30,507 1 2 0 1 1 50%
JasperReports Library 249,185 1 33 0 29 4 88%
Sweet Home 3D 28,824 1 1 0 0 1 0%

Total 1,078,843 14 169 9 127 33 80%

a Version e9325bcef1f1a911642b3a76cf5563753f512eaa.
b Version 8fef8ba12fe8b5ff0cd37c2bb6f5c4750c18a54c.

ing parameter is country, and about a name ds that
stands for “data source”.

• Incomplete descriptions that are missing a noun (30/127
=24%). Identifier names often consist of a noun com-
bined with some adjunct. The approach warns about
several argument names where the noun is missing,
such as missed, which should be renamed into missed-

Members (because the corresponding parameter is par-
entMembers), and to_connect, which should be re-
named into to_connect_address.

• Meaningless names (17/127=13%). The approach re-
ports argument names that reveal little or nothing
about the value that the identifier refers to, such as
list and object.

• Inconsistent names (38/127=30%). The approach re-
ports argument names where multiple terms are used
to describe a single concept, such as file and module,
or thickness and width.

Most of the renaming opportunities (94%) are associated
with arguments, i.e., leading to renamings of arguments,
suggesting that the quality of parameter names is gener-
ally higher than that of argument names. It is reasonable
in that developers usually pay more attention to parameter
names because methods are expected to be called later and
may be used by other developers. However, arguments are
often encapsulated and hidden within methods, and thus de-
velopers rarely expect them to be read or modified by other
developers.

Previous work shows that meaningful identifier names con-
tribute to code understandability [21], and we believe that
following the renaming suggestions of the analysis can greatly
improve the readability of the code.

There are two main reasons for false positives reported by
the approach. First, the analysis is unable to distinguish
intended from unintended anomalies. For example, for the
statement bounds = new Rectangle(bounds.y, bounds.x,

bounds.height, bounds.width), the analysis suggests swap-
ping the last two arguments because their corresponding pa-
rameters are width and height, respectively. However, the

developer intends to rotate the rectangle, i.e., the anomaly
is intended. Second, the analysis currently fails to identify
similarities that are obvious for a human but not for our
definition of similarity, e.g., because the analysis does not
tokenize names correctly or because it is unaware of irregu-
lar English plural forms. We believe that the second reason
for false positives can be addressed by more sophisticated
processing of names, such as Butler et al.’s method for tok-
enizing identifier names [7] or techniques borrowed from the
natural language processing community.

4.2 Recommendation of Arguments
As the second application of the findings presented in Sec-

tion 3, we present a name-based recommendation system
that suggests arguments to a developer. Such a system can,
e.g., be used as part of the code completion algorithm of
an IDE, where it recommends an argument just when the
developer types a method call. The key idea is to pick from
the set of potential arguments the argument whose similar-
ity with the corresponding parameter is significantly higher
than any of the alternatives.

4.2.1 Approach
Our approach recommends arguments as follows. First,

for a given argument slot, i.e., where an argument should be
inserted, the approach retrieves its corresponding parame-
ter, noted as par. If the name of this parameter is one of the
low-similarity parameters, then the approach makes no rec-
ommendation for this argument. Otherwise, the approach
collects all potential arguments (noted as Spot): local vari-
ables, parameters of the enclosing method, invocation on
methods of the enclosing class, and fields of the enclosing
class. It does not consider complex expressions or literals,
like this.getAuthor().getName() and 99, because consid-
ering such complex expressions or literals would make the
search space for potential arguments extremely large. Third,
it excludes elements from Spot that are not type-compatible
with the parameter or are not available in the slot. Ex-
cluding such elements guarantees that the recommended
argument will not introduce syntactic errors. Fourth, it
computes the similarity between the parameter name and



Table 3: Results of argument recommendation.

Application
Size

(LOC)
Recommended

Arguments
Precision

Neuroph 11,377 326 80%
WURFL 10,252 343 87%
Json-lib 8,055 122 92%
Joda-Time 27,779 797 81%

Total 57,463 1,588 83%

the names of the collected potential arguments. Finally, if
there is an argument in Spot whose similarity is significantly
greater than others (i.e., the distance is no less than α), the
approach recommends this argument.

4.2.2 Calibration
To calibrate the threshold α and to evaluate the approach,

we run the recommendation system for each argument slot in
a program, i.e., for each argument position of all call sites in
the program. For each slot, we compare the recommended
argument against the current one. If both arguments are
identical, the recommendation is considered to be correct.
Otherwise, the recommendation is considered to be incor-
rect. Based on these data, we compute the precision of the
approach as the number of correct recommendations divided
by the total number of recommendations.

We calibrate the threshold α on three open source appli-
cations: HtmlUnit, CKEditor, and c3p0. We observe that
while α is smaller than 0.5, the precision increases quickly
with the increase of α. However, after that the precision in-
creases insignificantly with the increase of α. Consequently,
we use α = 0.5 in the remaining experiments.

4.2.3 Evaluation
The approach is evaluated on four open source applica-

tions: Neuroph, WURFL, Joda-Time, and Json-lib. The
evaluation results are presented in Table 3. From the table,
we observe that the approach recommends 1,588 arguments
with a precision of 83%.

72% of the incorrect recommendations are associated with
arguments that are either complex expressions or literals,
which the approach cannot recommend. Consequently, if
the current argument is a complex expression or a literal,
the approach fails to recommend the correct argument. 22%
of the arguments in the subject applications are complex
expressions or literals. Another reason for incorrect recom-
mendations (7%) are typecasts, such as (Map) value. Since
the approach recommends type-compatible arguments only,
it cannot succeed if the actual argument is a cast expres-
sion. Excluding complex expressions, literals, and cast ex-
pressions, the precision of the recommendation is up to 96%.

Among the 1,588 recommended arguments, 1,135 (71%)
are associated with inter-class invocations, i.e., the invoca-
tions (and the arguments) are out of the documents where
the invoked methods are declared. The average precision for
such inter-class recommendation is 84%. It is even slightly
greater than that for inner-class recommendation (average
precision 80%). A possible reason is that many of the inter-
class invocations are associated with APIs whose parameters
are often named more carefully.

5. THREATS TO VALIDITY
A threat to external validity is that conclusions drawn

from a set of Java applications might not hold for other ap-
plications. To reduce the threat, we select the most popu-
lar open source applications from SourceForge, which yields
60 applications from various application domains. Further-
more, for RQ5, we address this threat via k-fold cross-vali-
dation.

For RQ4, another threat to external validity is that we
manually analyze only 200 samples to investigate why some
arguments are dissimilar to their corresponding parameters.
To reduce this threat, we randomly select these 200 sample
arguments from the population and validate the analysis
results on the entire population.

The study results depend on the similarity measure that
compares argument names and parameter names. We have
experiments with several alternative similarity measures, but
we have not found major changes in the overall results of
the study. For example, when replacing Formula 1 with the
string similarity-based metric from [27], the resulting accu-
racy in argument recommendation (82%) is almost identical
to the current one (83%). In future work, it would be inter-
esting to try additional alternative measures of similarity.

Our evaluation of the effectiveness of a name-based ano-
maly detection is subject to two threats to validity. First,
our approach to manually identify known argument-related
changes in the history of applications may not yield a repre-
sentative set of argument-related bugs. We carefully inspect
each of the changes that we consider as known bugs to en-
sure that they are indeed bugs, but we cannot ensure that
we consider all such bugs in the history of these applica-
tions. Second, the classification of anomalies into incorrect
arguments, renaming opportunities, and false positives is, to
some degree, subjective. To reduce any potential bias, three
engineers inspect each warning and must reach a consensus
about its classification.

6. RELATED WORK
The importance of identifier names has been validated and

well recognized [6, 9, 10]. As suggested by Lawrie et al.[21],
there are two main sources of domain information: identi-
fier names and comments. Because many developers do not
write comments, identifier names are critical for program
comprehension. A method in which names assist in reverse
engineering is presented in [9]; it consist of extracting con-
cept lattices by analyzing the identifiers names in programs.1

Consistent naming is important and a number of approaches
have been proposed to keep names consistent [4, 17, 18]. The
basic idea is that a single concept within the same applica-
tion should be referred to by the same name [21, 12].

A number of approaches have been proposed to calculate
name similarity for identifiers. Cohen et al.[11] compare dif-
ferent string metrics for matching names and records. A
number of approaches to tokenize identifiers have been pro-
posed [13, 14]. Enslen et al. [13] propose an approach to
split identifiers into sequences of words by mining word fre-
quencies in source code. Butler et al.[7] propose an approach
to decompose identifier names into meaningful words even
if these names do not follow the camel case naming conven-
tion. Taneja et al. [30] suggest to use a synonym database
to improve the accuracy of name comparison. These ap-

1Their paper has inspired the prefix of our title.



proaches might be used to split identifiers, and to facilitate
computation of hybrid similarity [24] between identifiers. In-
corporating such sophisticated approaches of computing the
similarity between arguments and parameters may increase
the similarities measured in our study.

Zhang et al. [32] propose an approach to recommend ar-
guments for API usage. They mine existing code bases and
build an argument usage database. For each API usage, the
approach retrieves similar usage instances from the database
and recommends arguments by concretizing such instances.
A difference between their work and this one is that their
approach depends on a large number of usage instances of
the APIs. For non-API method invocation or less popular
APIs, it is challenging to collect such instances.

An approach by Pradel and Gross [27, 26] relates to one
of the applications of our findings, anomaly detection. They
present an approach to identify problems related to the order
of equally typed arguments. For each call site, they reorder
equally typed arguments. If the reordered arguments match
the names used at other call sites significantly better, they
report a warning. Our anomaly detection differs from theirs
in the following two aspects. First, they identify problems
related to the order of equally typed arguments, while this
work addresses arbitrary arguments. Second, they compare
arguments (at a call site) with other arguments (at other
call sites of the same method). In contrast, we compare
arguments with corresponding parameters.

There are several approaches that identify renaming op-
portunities. The first category of such approaches is to
identify renaming opportunities by checking identifier names
against predefined rules. All names breaking such rules are
presented as potential renaming opportunities. Abebe et
al. [1] introduce lexicon bad smells that indicate potential
lexicon construction problems. Caprile and Tonella [10] pro-
pose an approach to standardize program identifier names.
First, it standardizes the lexicon (terms in identifier names).
Second, it standardizes the arrangement of terms within an
identifier name. Other approaches to standardize identifier
names have been conducted by Lawrie et al. [19, 20] and
Butler et al. [8]. Our work differs from these approaches in
that it can identify renaming opportunities without requir-
ing a set of predefined naming conventions.

The second category of work on renaming opportunities
searches for inconsistent naming. Deissenboeck and Pizka [12]
propose a model-based approach for identifying inconsistent
naming. Based on maps between concepts and names, their
approach can identify two categories of basic warnings. The
first category of such warnings is given when two identifiers
have identical names but different types. The second cate-
gory of such warnings is given when an identifier is declared
but never referenced. The first category of such warnings
might suggest renaming opportunities. Our approach dif-
fers from their work in that it focuses on arguments and pa-
rameters only (arguments and parameters often refer to the
same concept) and thus does not require the maps between
concepts and names. It is a great advantage because it is
difficult to build the maps accurately, and it usually requires
domain experts. Thies and Roth [31] propose another way to
identify inconsistent naming. They analyze variable assign-
ments and identify variables that refer to the same object
and are used in the same way. They suggest such variables
to share the same name. Our approach differs by focusing
on arguments and parameters instead of assignments.

The third category of work on renaming opportunities
builds relationships between special terms and infers a set
of rules, e.g., that a method that matches contain* should
return a boolean [16]. Methods that break such rules are
reported as renaming opportunities. Our approach differs
from their work in that our approach identifies renaming op-
portunities on arguments and parameters whereas their ap-
proach identifies renaming opportunities on method names.

The fourth category of work on renaming opportunities
generalize renamings conducted in the rest of the program.
Once a rename refactoring is conducted manually or with
tool support, Liu et al. [22] recommend to rename closely
related software entities whose names are similar to that of
the renamed entity. The approach proposed in this paper
differs from that in [22] in that it does not depend on con-
ducted renamings.

Arnaoudova et al. [5] analyze and classify identifier renam-
ings, e.g., by comparing the original and the new name using
an ontological database [23]. Future work may improve our
similarity measure using such ontological databases. Sta-
tistical language models extracted from a corpus of code
have been used to automatically suggest identifier names for
variable names [2], as well as method and class names [3].
JSNice [28] predict names of local variables in JavaScript
applications.

7. CONCLUSIONS AND FUTURE WORK
This paper presents the first in-depth empirical study of

similarities between the names of arguments and parame-
ters of methods. Our results show that identifier names of
arguments and parameters are often similar to each other,
that dissimilar names can be filtered based on low-similarity
parameters inferred from a set of sample programs, and that
many arguments are the most similar to the corresponding
parameter of all possible arguments that are available in the
scope of the method call. As applications of our findings, we
present an anomaly detection technique that identifies re-
naming opportunities and potentially incorrect arguments,
as well as a recommendation system that suggests arguments
to a developer who is typing a method call.

The broader impact of our work is to show that identi-
fier names are a rich source of information that can provide
otherwise missing information to program analyses. We ex-
pect our results to encourage future research on name-based
program analyses, which will complement existing program
analyses for several software engineering tasks. For example,
names may improve code completion algorithms, support
the generation of documentation, and support fault local-
ization.
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