
Typed and Confused: Studying the Unexpected Dangers of
Gradual Typing

Dominic Troppmann
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany

dominic.troppmann@cispa.de

Aurore Fass
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany

fass@cispa.de

Cristian-Alexandru Staicu
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany

staicu@cispa.de

ABSTRACT
In recent years, scripting languages such as JavaScript and Python
have gained a lot of traction due to their flexibility, which allows de-
velopers to write concise code in a short amount of time. However,
this flexibility is achieved via weak, dynamic typing, which fails to
catch subtle bugs that would be prevented by a compiler, in static
typing. Gradual-type systems like TypeScript emerged as a solu-
tion that combines the best of both worlds, allowing developers to
annotate parts of their code with optional type hints. Nonetheless,
most practical deployments of such systems are unsound, limiting
themselves to static checks and not performing residual runtime
checks that help enforce type hints uniformly. This is a missed
automation opportunity that offloads the burden on developers,
who still need to perform explicit type checks at transition points
between untyped and typed code so that values at runtime obey
the type hints. Failure to do so can result in subtle type inconsis-
tency bugs, and when user input is involved, it can render input
validation mechanisms ineffective, resulting in type confusion prob-
lems. In this work, we study the relation between gradual typing
and type confusion. Our main hypothesis is that the type hints in
the code can mislead developers into thinking they are enforced
consistently by the compiler, resulting in a lack of explicit runtime
checks that ensure type safety. We perform a large empirical study
with 30,000 open-source repositories to statically analyze if and
how they use gradual typing and to what extent this influences the
presence of explicit type checks. We find that many projects feature
gradually typed code, but usually only in small portions of their
code base. This implies the presence of many points in the code
base where developers must add explicit type checks, i.e., at the
transition points between unannotated and annotated code. Our re-
sults further indicate that gradual typing may have a deteriorating
effect when parameters are annotated with primitive types. Finally,
we manually analyze a small portion of the studied repositories and
show that attackers can remotely cause type confusion and violate
the type hints added by developers. We hope that our results help
raise awareness about the limits of current gradual-type systems
and their unwanted effect on input validation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10. . . $15.00
https://doi.org/10.1145/3691620.3695549

1 INTRODUCTION
Dynamically typed programming languages, such as Python and
JavaScript (JS), streamline the development process, making them
particularly appealing for quick prototyping and onboarding novice
developers. An important benefit of these languages is that they
omit the type annotation burden developers face in statically typed
programming languages like Java or Rust [36]. Additionally, dy-
namically typed languages tend to be significantly more flexible,
for example, because the same variable can hold multiple types
of data at runtime. However, this flexibility can also lead to type
inconsistency bugs [42].

Recently, many modern scripting languages such as Python pro-
pose a compromise solution to this tension: gradual typing. This
type system aims to combine the benefits of static and dynamic
typing by allowing developers to annotate arbitrary portions of
their code with optional type hints. Developers, thus, retain a high
level of flexibility while, at the same time, benefiting from some
static type checks at compile time. While Gao et al. [17] quantify
that these type systems could prevent a significant amount of bugs
seen in open-source repositories, Bogner and Merkel [5] argue that
this benefit does not lead to an overall reduction in number of bugs.

In this work, we study the unexpected security implications of
the two most popular gradual-type systems: TypeScript and Python.
TypeScript (TS) is a superset of JavaScript enabling the addition
of type hints that must be transpiled to JavaScript code before ex-
ecution [56]. The transpiler performs limited static type checks
to prevent internal type inconsistencies. Python, in contrast, sup-
ports adding type hints natively since version 3.5 [18] but does
not provide any type checking out-of-the-box. Developers must
thus, rely on third-party type checkers such as mypy1 or pyright2
instead [19] to benefit from type hints. Judging by the usage in open-
source projects on Github, Python is the most popular language
with almost 17% of all pull requests [52]. While not every Python
repository is gradually typed, the language’s immense popular-
ity [53, 55] means a large audience is potentially exposed to gradual
typing. TypeScript has also gained a lot of traction recently, surpass-
ing other popular programming languages like Rust or PHP [52, 54]
and accounting for 7.3% of all pull requests on GitHub [52]. These
figures suggest that gradual typing is widely adopted, stressing the
importance of studying its implications.

The downside of existing, widely-adopted gradual type systems
is that they are unsound, a departure from their theoretical counter-
parts [29, 44, 46, 50, 57]. This trend is mainly the result of draconic
performance requirements, which, if violated, would lead to slow,
1https://mypy.readthedocs.io/en/stable/
2https://microsoft.github.io/pyright/#/

1

https://doi.org/10.1145/3691620.3695549
https://mypy.readthedocs.io/en/stable/
https://microsoft.github.io/pyright/#/


ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Troppmann et al.

impractical systems. For instance, if a given value has a statically
unknown type, the TypeScript compiler assigns it the bottom type
any, which matches any type hint in the code. Stronger, sound type
systems would instead insert a residual type check into the gener-
ated code to ensure that, at runtime, the value indeed matches every
type hint. Thus, practical gradual typing inherits a distinct lack of
runtime type safety from dynamic typing. Therefore, developers
must do the compiler’s job and implement explicit type checks to
ensure that actual and expected data types match during program
execution. Failing to do so can render the program susceptible to
type inconsistencies, i.e., unintended program behavior caused by
unexpected data types at runtime [42]. Even worse, when adver-
saries can intentionally trigger such unexpected behavior, we talk
about type confusion3 payloads. This, in turn, can help attackers
bypass otherwise sound input validation, as we discuss below.

Let us illustrate this scenario by considering Listing 1. The
function foo attempts to validate its input by rejecting the string
"admin" (lines 10 to 14). However, there is no explicit type check
to assert that username is a string at runtime. We note that the
input validation uses the strict inequality operator (!==) in the
if-statement’s condition, which is encouraged by the JavaScript
community, in detriment to its non-strict version. In this case, how-
ever, it allows an attacker to circumvent the entire input validation
by passing an input that is not a string, as expected by the de-
veloper, but an array that is still semantically equivalent to the
blocklist value (line 18). This developer’s expectation is illustrated
by the function parameter’s type hint (line 1). During the property
access in line 11, the array passed as username in line 19 is implic-
itly coerced to a string, causing the program to print the secret
stored under "admin". The TypeScript compiler fails to catch this
bug because it assigns the type any to the results of JSON.parse
in line 18 and all its properties. Hence, this type matches the string
type hint in line 1, and the compiler does not produce any type
error. However, an explicit type check (lines 5 to 7) would solve the
issue by rejecting non-string usernames.

In a sound gradual type system, the compiler would produce this
explicit type check if it cannot infer the value’s data type statically,
as is the case above. The compiler has all the information readily
available to produce such type checks automatically, i.e., the type
hint mandates which type the developer expects. Automatically gen-
erating explicit type checks would lessen the burden on developers
by reducing the amount of code they need to write and prevent-
ing careless omissions like in the example above. Thus, we argue
that this constitutes a missed opportunity in current gradual type
systems. Moreover, we contend that unsound type checking can
have many security implications. First, the resulting type confusion
problems can render input validation ineffective or steer the exe-
cution to unexpected parts of the code, e.g., invoking unexpected
methods on the wrong type can enable code reuse attacks [49].
Second, we hypothesize that because of the type hints, developers
are less likely to place explicit type checks in their code, trusting
the compiler to ensure type safety, as is the case in many other
mainstream programming languages. Let us revisit the example
in Listing 1. For a developer used to statically typed languages, it

3https://snyk.io/blog/remediate-javascript-type-confusion-bypassed-input-
validation/

1 function foo(username: string) {
2 const secret = {"admin": "secret", "Alice": "foo"};
3
4 /* Fix: explicit type check
5 if (typeof(username) != "string ") {
6 throw new Error("not a string ");
7 } */
8
9 // Input validation
10 if (username !== "admin") {
11 console.log(secret[username ]);
12 } else {
13 throw new Error("Not␣allowed");
14 }
15 }
16 foo("admin"); // -> Throws error
17 let input =
18 JSON.parse('{"name ":[" admin "]}');
19 foo(input.name); // -> Prints secret

Listing 1: Input validation failing to enforce the expected
data type, thus rendering the value check at line 5 ineffective
and enabling type confusion payloads.

might appear natural that the type system enforces the type hint
in line 1 at runtime, preventing any execution of the foo function
with an argument that is not a string. However, this is not the case
in the current implementation of gradual typing in both TypeScript
and Python: While the TS compiler indeed throws a compile-time
error if the function is statically invoked with the wrong data type,
the compiler’s type inference capabilities are limited. Listing 1 illus-
trates these limitations in lines 17 to 19, where the compiler fails
to infer the type of the deserialized JSON object and consequently
proceeds with executing the code and printing the secret instead
of throwing a type error during compilation. We believe we are
the first to propose this provocative hypothesis, and if proven true,
the developers must be informed of the hidden danger of gradual
type-systems.

To shed light on the security implications of gradual typing, this
paper presents an empirical study of ∼30,000 software reposito-
ries sampled from GitHub. We extract several code metrics from
each project’s source code via static analysis using CodeQL. These
metrics allow us to assess how gradual typing is typically used in
practice and how common type checks are when type hints are
present compared to when they are not. Beyond that, we also study
the role of type checks in practice, i.e., where and how developers
implement them. The final part of this study addresses the feasi-
bility of type confusion payloads due to lackluster type-checking
in gradually typed code. We discuss several problematic coding
patterns we identified and observed in the wild through further
static and manual analysis. More specifically, this study answers
the following research questions:

RQ1: How prevalent are type hints in a typical gradually-typed
project? We find that gradual typing is a commonly used feature
but not used extensively by most studied projects. That is, most
projects feature type annotations, but only in small portions of their
code base. Furthermore, annotated and unannotated parts of the
code are poorly separated in some projects, resulting in hundreds
of transitions from the unannotated to the annotated world, which

2

https://snyk.io/blog/remediate-javascript-type-confusion-bypassed-input-validation/
https://snyk.io/blog/remediate-javascript-type-confusion-bypassed-input-validation/


Typed and Confused: Studying the Unexpected Dangers of Gradual Typing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

can impair the deployment of efficient, sound gradual type systems
in the future, i.e., the compiler needs to produce a check for each
transition function.

RQ2: Do type hints affect the prevalence of explicit type checks?
Our analysis shows that only 2.5% and 1.5% of the parameters are
type-checked in JS/TS and Python, respectively. This likelihood
does not appear to be affected significantly by the presence of type
hints in general. We observe, however, that a parameter is much
less likely to be type-checked if it is annotated with a primitive data
type (0.72% on average), with more than 70% of the projects with
primitive annotated parameters do not type-check any of them. This
indicates that, while type hints do not affect the overall frequency of
type checks, they appear to influence which parameters developers
explicitly type-check in practice.

RQ3: Are type checks more likely to occur in functions that are par-
ticularly prone to type errors? Are type hints affecting this likelihood?
Transition functions and remote flow sinks (RFS), i.e., functions pro-
cessing user input, can be particularly problematic for type safety.
Yet, we find that only 7.6% and 9.8% of transition functions are
type-checked in JS/TS and Python, respectively. The situation is
even worse for RFS, with only 5.6% (JS/TS) and 2% (Python) of these
functions being type-checked. Moreover, in the majority of projects
featuring such functions, none of them are type-checked. These
findings illustrate that gradual typing could significantly improve
type safety by automatically enforcing some type hints in these
relevant code locations.

RQ4: Is it possible to violate type hints and cause type confusion
remotely? Through a mix of static and manual analysis, we identify
33 annotated functions that process user-controlled data without
checking its type. Six of these functions invoke a string method in
their inputs, which results in unhandled errors if the inputs have
unexpected data types.We further demonstrate howmalicious users
can remotely trigger unexpected behavior in one of the functions,
showing that failing to enforce type annotations can indeed cause
problems in practice.

In summary, this paper makes the following contributions:

• We present a large-scale empirical study of the relation be-
tween type hints and explicit type checking in gradually-
typed code.

• To the best of our knowledge, we are the first to present an
in-depth discussion of the security implications of unsound
gradual typing.

• We identify 33 annotated functions processing user-controlled
data without type-checking it and discuss how we success-
fully trigger type confusion remotely in one of them.

• We discuss the potential benefits of automatically enforcing
(some) of the present type annotations by having a compiler
produce explicit runtime checks at specific code locations,
similar to statically typed languages.

To encourage reproducibility, comparison, and follow-up work,
we release our source code and resources [23].

2 BACKGROUND
In this section, we first present the case of a known security advisory
that could have been prevented by enforcing type hints consistently.

We then introduce our terminology for different kinds of type
checks and code locations we aim to study.
1 function applyPatches_ <T>(draft: T, patches: Patch [])

: T {
2 patches.forEach(patch => {
3 const {path , op} = patch
4 let base: any = draft
5 for (let i = 0; i < path.length - 1; i++) {
6 const p = path[i]
7 if (p === "__proto__" || p === "constructor") die

(24)
8 }
9 ...
10 }

Listing 2: Simplified version of the incomplete fix applied to
immer, to prevent prototype pollution.

2.1 The Case of CVE-2020-28477
In theory, it is clear that current implementations of gradual typing
do not enforce type hints at runtime; therefore, developers must
implement explicit type checks to prevent type errors at runtime.
In practice, however, we observe cases where developers fail to
adhere to this requirement. The popular npm package immer4 is
one example for this phenomenon: until version 8.0.1, the package
was vulnerable (CVE-2020-28477) to prototype pollution [30, 49].
Listing 2 displays a simplified version of the fix the developers
implemented to solve the issue. It consists of a simple check that
throws an error if the path component of a Patch contains the
string "__proto__" (line 7). Note that the strict equality operator
(===) is used here, which returns false if its operands have different
types. Because there is no explicit type check to enforce that path
is indeed an array of strings, one can easily bypass this check by
wrapping the string "__proto__" in an array. The function thus
remains vulnerable to prototype pollution despite the supposed fix,
which the publication of CVE-2021-23436 demonstrated only a few
months later. This and similar examples highlight the importance
of type safety in dynamically/gradually typed code. At the same
time, it raises the question of why developers sometimes fail to
implement crucial explicit type checks and if the presence of type
hints has anything to do with it, e.g., the Patch[] annotation in
line 1 already specifies the structure of the input and the fact that
each path fragment should be a string, so the missing check might
appear redundant. With this study, we aim to learn more about
gradual typing and how adding type hints affects the type safety of
dynamically typed code in practice.

2.2 Where Type Checks Matter
By now, it should become clear that type safety is of utmost impor-
tance, especially in dynamically- and gradually-typed languages,
where the compiler does not automatically enforce data types at
runtime. In this study, we focus on two kinds of functions that are,
in theory, particularly susceptible to type-related issues [3, 16, 44,
46, 51]. We outline these in the remainder of this section.

4https://www.npmjs.com/package/immer
3

https://security.snyk.io/vuln/SNYK-JAVA-ORGWEBJARSNPM-1061986
https://security.snyk.io/vuln/SNYK-JS-IMMER-1540542


ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Troppmann et al.

2.2.1 Transition Functions. We refer to annotated functions called
by an unannotated function as a transition functions. Transition
functions can be problematic regarding type safety because the
compiler loses type information in the unannotated parts of the
code. Thus, if the unannotated function passes the wrong type of
data to the transition function, the compiler will not produce a
warning. Listing 3 illustrates this scenario. We see the unannotated
function foo (line 1), passing its input to the annotated function
bar (line 2). bar is thus a transition function. Note that the compiler
produces an error when trying to pass an array instead of a string
directly to bar (line 5). If the array is passed to foo instead, the
compiler produces no warning, and the program crashes at runtime
because the function replace() is not defined on arrays (line 6).
In practice, functions are often called from different files in distant
parts of the code base. With nothing to make developers aware
of transition functions, identifying them can be difficult. Hence,
developers are typically unaware of them and the danger they
pose. In practice, this can lead to lackluster type checking and the
program suffering from typing-related bugs at runtime.
1 function foo(x){ bar(x); }
2 function bar(y: string){
3 console.log(y.replace("␣", ""));
4 }
5 bar(["test␣ing"]); // Compiler error
6 foo(["test␣ing"]); //No warning/error -> Crash (

Array.replace () undefined)

Listing 3: Compiler fails to produce an error for transition
function foo, indirectly invoked on the wrong datatype.

2.2.2 Remote Flow Sinks. Transition functions render a program
potentially susceptible to internal type-related bugs due to pro-
gramming errors. In contrast, remote flow sinks (RFS), i.e., functions
processing user-provided data, are even more problematic regard-
ing type safety, as users can potentially provide arbitrary types of
data. If these functions do not check the data types of their inputs,
an attacker can intentionally trigger type errors or unintended
behavior by providing unexpected types of data. This scenario is
commonly referred to as type confusion. The vulnerability in the
immer package discussed in Section 2.1 is one example. Similar to
transition functions, it can be hard to identify functions reached by
user-controlled data in practice.

3 METHODOLOGY
To assess the prevalence of gradual typing and its effect on type-
checking practices, we propose a three-phased approach outlined in
Figure 1. First, we sample a list of the most starred GitHub projects
for a given programming language, clone their repositories, and
generate the corresponding CodeQL databases. Next, we extract 20
code metrics reflecting gradual typing and type-checking practices
via static analysis of the CodeQL databases set up previously. In
the final phase, we select a handful of candidate projects based
on the code metrics we computed earlier. We further analyze and
manually assess these projects to identify and confirm potential
type-related issues due to gradual typing. We discuss each phase in
detail in the remainder of this section.

Figure 1: Overview of our approach. Blue nodes correspond to
the tools used for the individual steps. The remaining nodes
represent the intermediary steps of our approach. Green
nodes additionally produce data used in the evaluation.

3.1 Sampling
We target the 10,000 most popular GitHub projects for JavaScript
(JS), TypeScript (TS), and Python. We use the number of stars as a
proxy for a project’s popularity. This metric correlates with a repos-
itory’s number of contributors and forks, indicating how many
other users and projects it affects [6, 7]. To avoid the limitations
of GitHub’s official REST API, we collect the list of repositories
using the SEART-GitHub Search (GHS) web API5, which was built
specifically for repository mining [11]. As shown in Figure 1, we
use CodeQL for the static analysis of GitHub repositories. CodeQL
does not operate directly on the source code. Instead, it uses a fully
hierarchical representation of the code that includes the program’s
abstract syntax tree, data flow graph, and control flow graph6. This
representation is stored as code facts in databases one can query
using an SQL-like syntax. The preprocessing of our datasets thus
includes cloning each repository and generating the correspond-
ing CodeQL database, which we store on disk. This allows us to
statically analyze repositories at will later on, without the entire
preprocessing.

We queried GHS for the lists of the most popular JavaScript,
TypeScript, and Python projects on March 13, April 13, and April
14, 2023, respectively. We generated the JavaScript dataset onMarch
13, the TypeScript dataset on April 1, and the Python dataset on
May 9, 2023. On a server with two AMD EPYC 7H12 64-core CPUs,
256GB of RAM, a 1Gbit Ethernet connection, and CodeQL using
up to 12 threads, it takes around 70 hours to generate one dataset
of 10,000 CodeQL databases, on average. In total, the JS, TS, and
Python datasets comprise 9,952, 9,967, and 9,895 CodeQL databases,
respectively. The missing databases are cases where our sampling
script failed to clone the corresponding repository from GitHub,
either because the URL provided by GHS was incorrect or because
the process exceeded our time budget per repository, which we set
to ten minutes. The three datasets have a combined size of close to
3TB. We publish our source code and resources for reproducibility
and to assist follow-up work [23].

5https://seart-ghs.si.usi.ch/
6https://codeql.github.com/docs/codeql-overview/about-codeql/

4

https://seart-ghs.si.usi.ch/
https://codeql.github.com/docs/codeql-overview/about-codeql/


Typed and Confused: Studying the Unexpected Dangers of Gradual Typing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Metric Explanation

𝐹𝑖𝑙𝑒𝑡𝑜𝑡𝑎𝑙 Files in the project
𝐹𝑖𝑙𝑒𝑎𝑛𝑛 Files with at least one annotated function
𝐹𝑢𝑛𝑡𝑜𝑡𝑎𝑙 Functions in the project
𝐹𝑢𝑛𝑎𝑛𝑛 Functions with at least one annotated parameter
𝐹𝑢𝑛𝑡𝑟𝑎𝑛𝑠 Transition functions
𝑃𝑎𝑟𝑡𝑜𝑡𝑎𝑙 Total number of parameters
𝑃𝑎𝑟𝑎𝑛𝑛 Annotated parameters
𝑃𝑎𝑟𝑎𝑛𝑦 Parameters annotated with any

𝑃𝑎𝑟𝑢𝑛𝑎𝑛𝑛𝑇𝐶 Unannotated parameters with TC
𝑃𝑎𝑟𝑢𝑛𝑎𝑛𝑛𝑀𝑢𝑙𝑡𝑇𝐶 Unannotated parameters with multiple TCs
𝑃𝑎𝑟𝑎𝑛𝑛𝑇𝐶 Annotated parameters with TC
𝑃𝑎𝑟𝑎𝑛𝑛𝑀𝑢𝑙𝑡𝑇𝐶 Annotated parameters with multiple TCs
𝑃𝑎𝑟𝑝𝑟𝑖𝑚 Parameters with primitive annotation
𝑃𝑎𝑟𝑝𝑟𝑖𝑚𝑇𝐶 Parameters with primitive annotation and TC
𝑃𝑎𝑟𝑒𝑛𝑓 𝑇𝐶 Annotated parameters with enforcing TC

𝐹𝑢𝑛𝑡𝑟𝑎𝑛𝑠𝑇𝐶 Transition functions with TC
𝐹𝑢𝑛𝑎𝑛𝑛𝑅𝑓 𝑠 Annotated remote flow sinks
𝐹𝑢𝑛𝑎𝑛𝑛𝑅𝑓 𝑠𝑇𝐶 Annotated remote flow sinks with TC
𝐹𝑢𝑛𝑢𝑛𝑎𝑛𝑛𝑅𝑓 𝑠 Unannotated remote flow sinks
𝐹𝑢𝑛𝑢𝑛𝑎𝑛𝑛𝑅𝑓 𝑠𝑇𝐶 Unannotated remote flow sinks with TC

Table 1: Code metrics extracted using CodeQL, grouped by
the research question they first appear in.

3.2 Static Analysis
In the second phase of our approach, we statically analyze the
previously generated databases with a custom CodeQL query that
computes the 20 code metrics listed in Table 1 for every repository
in a given dataset. These metrics reflect the prevalence of gradual
typing, the type-checking discipline, and the role of type checks in
practice. Besides allowing us to answer our first three research ques-
tions, some of the metrics are later used to select candidate projects
for the hybrid security analysis that constitutes our approach’s
third and final phase. We implemented custom CodeQL libraries
for both JS/TS and Python that model functions, parameters, and
type checks, enabling both the static and the security analysis parts
of our approach. In total, we implemented over 700 lines of custom
CodeQL code. Running the static analysis is considerably faster
than the previous sampling process, taking between 20 to 50 hours
per dataset on our server, depending on the current load. While we
omit implementation details of the query for the sake of brevity, we
dedicate the rest of this section to discussing the individual code
metrics and how they allow us to answer our research questions.

3.2.1 Prevalence of Gradual Typing (RQ1). By answering this re-
search question, we aim to learn how common gradual typing is, in
general, and how consistently it is used within projects. To this end,
we first look at how many of the projects in our datasets contain
any type annotations and how many are completely untyped. Next,
we compute the split of annotated and unannotated code at three
levels of granularity: files, functions, and function parameters. To
this end, our query counts the total amount of files, functions, and
parameters and howmany of them feature type annotations, i.e., the
first six metrics in Table 1. Additionally, we measure the number of
parameters annotated with any (𝑃𝑎𝑟𝑎𝑛𝑦 ) as this provides little bene-
fit over not annotating the code at all and thus should be accounted
for during our evaluation. Finally, we investigate to what extent
annotated and unannotated parts of the code tend to be separated.
If both parts are not well separated, there is a lot of interaction
between annotated and unannotated functions, which manifests

in a high number of transition functions. Each transition function
can be problematic for type safety, as we outlined in Section 2.2. To
study this aspect of gradual typing, we measure the total number
of transition functions in each project (𝐹𝑢𝑛𝑡𝑟𝑎𝑛𝑠 ). With this, we can
compute the portion of transition functions among all annotated
functions, which lets us estimate to what extent annotated and
unannotated parts of the code are intertwined.

3.2.2 Effect on Type Checks (RQ2). To study how type hints affect
the likelihood of a parameter being type-checked, our query counts
the numbers of annotated and unannotated parameters with at
least one corresponding type check (𝑃𝑎𝑟𝑎𝑛𝑛𝑇𝐶 , 𝑃𝑎𝑟𝑢𝑛𝑎𝑛𝑛𝑇𝐶 ). We
note that obtaining a comprehensive list of all functions perform-
ing type checks is unfeasible because developers can implement
arbitrarily complex custom type checks. As a best-effort strategy
to approximate the set of all type checks, our query considers
built-in type-checking functions, i.e., typeof, instanceof, and
isinstance, as well as common user-built type-checks, such as
isString, isNumber, isArray, etc. The query then relies on Cod-
eQL’s dataflow analysis to link type checks to their corresponding
function parameters. With this information, we can later compute
the probability that a parameter is type-checked, given that it is
either annotated or unannotated. This way, we gain insights into
how type annotations may influence the type-checking discipline
in practice, if at all. Our query also counts how many parameters
are type-checked multiple times (𝑃𝑎𝑟𝑢𝑛𝑎𝑛𝑛𝑀𝑢𝑙𝑡𝑇𝐶 , 𝑃𝑎𝑟𝑎𝑛𝑛𝑀𝑢𝑙𝑡𝑇𝐶 ).

In the second part of this research question, we focus on type
checks on annotated parameters. Themetrics query counts the num-
ber of parameters annotated with a primitive data type (𝑃𝑎𝑟𝑝𝑟𝑖𝑚)
and how many of them have a type check (𝑃𝑎𝑟𝑝𝑟𝑖𝑚𝑇𝐶 ). With these
metrics, we can compute and compare the likelihood of parame-
ters annotated with primitive and non-primitive data types to be
type-checked. This tells us if developers are more or less inclined
to implement type checks in the presence of type hints.

Finally, we take this analysis even further by looking at the
portion of annotated parameters that feature an enforcing type
check (𝑃𝑎𝑟𝑒𝑛𝑓𝑇𝐶 ), i.e., a type check that enforces exactly the data
type given in the parameter’s type annotation, on the parameter
directly. If there is either a mismatch between the type annotation
and the checked type or if the type check occurs on some property
of the parameter instead, we refer to it as a specializing type check.
In statically typed languages, the compiler automatically generates
some of these enforcing type checks to guarantee type safety. In
current implementations of gradual typing, this is not the case,
which we believe is a missed opportunity to, on the one hand,
alleviate the type-checking burden and, on the other hand, improve
overall type safety. We discuss this further in Section 5.

3.2.3 Functions Prone to Type-Errors (RQ3). The third research
question concerns functions that are, in theory, particularly suscep-
tible to type errors at runtime (cf. Section 2.2). Our query counts the
number of transition functions (𝐹𝑢𝑛𝑡𝑟𝑎𝑛𝑠 ) and how many of them
are type-checked (𝐹𝑢𝑛𝑡𝑟𝑎𝑛𝑠𝑇𝐶 ). We compute similar metrics for re-
mote flow sinks (RFS). However, we distinguish between annotated
and unannotated functions here to possibly identify again an effect
of type hints on type-checking frequency. These metrics allow us
to gauge to what extent developers are aware of these functions
and the threat they pose to the type safety of their programs.

5



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Troppmann et al.

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of Commits

0.0

0.2

0.4

0.6

0.8

1.0

P
or

tio
n

Language
Python
JavaScript
TypeScript

Figure 2: Cumulative distribution of the number of commits
among projects featuring gradually typed code.

3.3 Manual Investigation
In this final step, we aim to study the practical implications of
gradual typing in practice. We aim to find annotated functions sus-
ceptible to type errors due to not being type-checked. To this end,
we first select the 50 TypeScript projects with the most annotated
remote flow sinks. We then clone these repositories locally and
generate their CodeQL databases. Next, we run a query on these
databases that returns all the functions where data from a POST
request body reaches a parameter annotated with string. We add
this constraint because it is easy to cause type confusion via POST
requests, e.g., pass an array instead of a string. We then manually
investigate all the code locations reported by the query and dis-
cuss cases where we believe it is possible to cause any unexpected
behavior. Finally, we attempt to set up the supposedly vulnerable
applications locally to confirm whether or not it is possible to trig-
ger this unexpected behavior remotely. We note that, in practice,
type-related issues are far from being limited to string parameters
and data from POST request bodies. Type confusion is often linked
to object (de)serialization issues, which are well-studied security
problems for languages like Java or PHP [14, 27, 47, 59].

4 RESULTS
In this section, we discuss our findings regarding the prevalence of
gradual typing, its effect on type-checking, and whether or not type
checks are used in functions that are problematic for type safety.
We also share our interpretation of these results and discuss their
implications for the type safety of gradually typed programs.

4.1 RQ1: Prevalence of Gradual Typing
Table 2 shows the partition of our datasets into gradually typed
and untyped projects. Note that these numbers do not quite add
up to the total dataset sizes stated in Section 3.1 because the static
analysis sometimes exceeded its allocated ten-minute time budget.
As expected, the TypeScript dataset consists almost entirely of
gradually typed projects. In contrast, it is surprising that more than
half of the projects in our JavaScript dataset also feature typed
code. Gradual typing is the least popular in the Python dataset,
where only about 40% of the projects contain type hints. Python, in
particular, is known to be particularly useful for rapid prototyping,
which might explain the lower gradual typing adoption rate. To
verify this hypothesis, we collect the number of commits for all
projects using type annotations in all three datasets and plot the
corresponding distribution in Figure 2. As it turns out, all three

JavaScript TypeScript Python
0

20

40

60

80

100

G
ra

du
al

ly
 ty

pe
d 

(%
)

Granularity
files functions parameters

Figure 3: Prevalence of type annotations at different levels
of granularity in JavaScript, TypeScript, and Python. Only
gradually typed projects are accounted for.

JavaScript TypeScript Python
Typed 5,256 9,813 3,981
Untyped 4,631 122 5,881

Table 2: Number of projects with and without type annota-
tions in each dataset.

distributions are very similar, suggesting that project maturity and,
consequently, rapid prototyping do not factor into the adoption
of gradual typing. To better understand the general adoption of
gradual typing, future work should study how the prevalence of
gradual typing evolves over time at a larger scale, e.g., ecosystem
level, and what motivates developers to annotate their code.

Next, we assess how consistently developers use gradual typing
within their projects by measuring the prevalence of gradual typing
at the file-, function-, and parameter levels. Figure 3 illustrates our
findings. Note that this part of the analysis only considers projects
with type hints. JavaScript projects tend to feature the least amount
of type annotations. Most of these projects feature type hints in
less than 20% of their files, functions, and parameters, with me-
dians ranging from 7.3% at the function level to 8.2% at the file
level. These findings align with our expectations, as the JavaScript
dataset consists of projects whose primary programming language
is JavaScript, not TypeScript. Next up is Python, where the preva-
lence of gradual typing is similarly consistent at all three levels,
with medians ranging from 12.8% for parameters to 21.7% at the file
level. Finally, TypeScript projects feature the largest portions of an-
notated code. The medians for file-, function-, and parameter level
are 36.4%, 55.5%, and 57.6%, respectively. Considering that more
than 75% of the projects have less than 70% of their code annotated,
this means even the vast majority of TypeScript projects feature
significant portions of unannotated code. Regarding type safety, the
numbers presented above are, in fact, a slight over-approximation
because we count parameters annotated with any as annotated
parameters despite it not adding any tangible benefit over leaving a
parameter unannotated. We find that this is the case for 5.4%, 5.9%,
7https://github.com/jasperapp/jasper

6

https://github.com/jasperapp/jasper


Typed and Confused: Studying the Unexpected Dangers of Gradual Typing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Figure 4: Part of the callgraph of jasper7. Unannotated, annotated, and transition functions are colored white, blue, and red,
respectively. Annotated and unannotated parts of the code are poorly separated, which introduces many transition functions.

JS/TS Python
P Typed Untyped Typed Untyped

𝑃𝐴𝑅
avg 2.64 2.38 1.52 1.39
med 1.71 0.95 1.01 0.21

𝑃𝐴𝑅𝑢𝑛𝑎𝑛𝑛
avg 2.74 2.38 1.32 1.39
med 1.13 0.95 0.72 0.21

𝑃𝐴𝑅𝑎𝑛𝑛
avg 2.35 - 2.53 -
med 1.33 - 0.56 -

𝑃𝐴𝑅𝑝𝑟𝑖𝑚
avg 0.72 - 0.73 -
med 0.0 - 0.0 -

𝑃𝐴𝑅𝑛𝑜𝑛𝑝𝑟𝑖𝑚
avg 3.04 - 3.64 -
med 1.69 - 1.2 -

Table 3: Probabilities (in %) of all, unannotated, annotated,
primitive annotated, and non-primitive annotated parame-
ters to be type checked (𝑃 (𝑇𝐶 (𝑝) | 𝑝 ∈ P)). We distinguish
between parameters in typed and untyped projects.

and 1.7% of the annotated parameters in JavaScript, TypeScript,
and Python, respectively, indicating that this phenomenon is rather
uncommon in practice.

A majority of projects use gradual typing, but typically, less
than half of the code within a repository is annotated.

After learning that most gradually typed projects feature signifi-
cant portions of annotated and unannotated code simultaneously,
we now look at how well these two parts are typically separated. As
discussed previously, bad separation leads to more transition func-
tions. To illustrate this, we invite the reader to look at Figure 4. It dis-
plays a part of the callgraph of the repository jasperapp/jasper.
We can observe the vast amount of transition functions (red), which
mark the boundary between unannotated (white) and annotated
(blue) code. However, overall, we find that annotated and unanno-
tated parts of the code are typically well separated. In most TS and
Python projects, less than 5% of the annotated functions are transi-
tion functions. For JS, the median is at 0%, meaning most projects
either completely isolate annotated and unannotated parts from
each other or interaction happens only in the inverse direction,
i.e., annotated functions calling unannotated functions. We do not
consider these interactions as they are not problematic regarding
type safety. While typically, the portion of transition functions is
rather low, some projects feature hundreds of transition functions,
as shown in Figure 5b. Considering that each transition function
can be problematic regarding type safety, and developers are likely
unaware of transition functions (cf. Section 2.2), these findings are
concerning.

4.2 RQ2: Effect on Type-Checking
From now on, we are only interested in comparing different kinds
of parameters, regardless of what dataset they belong to. Hence,
we combine the JS and TS datasets and only distinguish between
typed and untyped projects. Parameters in untyped projects (i.e.,
unannotated by definition) represent the baseline of parameters in
dynamically typed JavaScript and Python code without possible
interference from type annotations. We clearly distinguish between
these and unannotated parameters in gradually typed projects,
as the latter are likely implemented by developers that also use
type hints in other parts of their projects and thus may have a
fundamentally different attitude towards type checking. This way,
we can observe differences in both environments that may be linked
to the presence of type annotations.

Table 3 lists our analysis results for this part of the study. First,
we want to draw the reader’s attention to the overall probability
of any parameter being type-checked stated in the table’s first row.
It tells us that type checks for function parameters are generally
infrequent, with less than 3% of parameters being type-checked
on average across all our datasets. Type checks are particularly
scarce in Python. One possible explanation for this phenomenon
might be that implementing type checks is only necessary in a few
specific locations, particularly where data enters the program from
the outside. Type checks are also more likely to occur in gradually
typed projects, though the difference is only small compared to
projects without any type annotations.

Next, we shift our attention towards comparing annotated and
unannotated code regarding the prevalence of type checks. Table 3
tells us that there is no significant difference between annotated
parameters (𝑃𝐴𝑅𝑎𝑛𝑛) and unannotated parameters (𝑃𝐴𝑅𝑢𝑛𝑎𝑛𝑛), re-
gardless of whether the latter are in typed or untyped projects.
All three kinds of parameters are type-checked around 2.5% of the
time on average, with the medians of the respective probability
distributions ranging from 0.95% (baseline) to 1.33% (annotated
parameters). For Python, we see that annotated parameters tend
to be slightly more often type-checked than both kinds of unanno-
tated parameters. However, the differences are small, i.e., within
1.25% for the average and 0.25% for the median. In summary, we
do not observe a clear trend indicating that type annotations af-
fect a parameter’s likelihood of being type-checked in our datasets.
More extensive analyses are required to draw definite conclusions
about the presence or absence of such an effect. Another interest-
ing observation is that 20–25% of the type-checked parameters in
JS/TS and Python are type-checked more than once, on average.
While it is debatable whether or not having multiple type checks on
the same parameters benefits the program’s type safety, we advise

7



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Troppmann et al.

0 2000 4000 6000 8000 10000
Projects

10
0

10
1

10
2

10
3

10
4

10
5

A
nn

ot
at

ed
 P

ar
am

et
er

s

Python
JS/TS

(a) Unenforced type annotations.

10
0

10
1

10
2

10
3

10
4

Projects

0

1000

2000

3000

4000

5000

Tr
an

si
tio

ns

Python
JS/TS

(b) Transition functions

10
0

10
1

10
2

10
3

10
4

Projects

0

25

50

75

100

125

150

175

R
FS

Python
JS/TS

(c) Remote flow sinks

Figure 5: Distributions of annotated parameters in projects without enforcing type checks (a), and number of transition
functions (b) and remote flow sinks (c).

future research to consider this phenomenon when looking into
potential differences regarding the type-checking discipline, both
in annotated and unannotated code.
Type checks are extremely scarce in both annotated and unan-
notated code.
While type annotations do not seem to affect the overall fre-

quency of type checks, they may affect which parameters are type-
checked. Our next objective is to understand the role of type checks
in annotated code, specifically. To this end, we compute the proba-
bility of parameters annotated with primitive type hints (𝑃𝐴𝑅𝑝𝑟𝑖𝑚)
and compare it to that of parameters annotated with complex data
types (𝑃𝐴𝑅𝑛𝑜𝑛𝑝𝑟𝑖𝑚). The results are also listed in Table 3, where
we see that parameters with primitive type annotations are only
type-checked 0.7% of the time in JS/TS and Python, which is sig-
nificantly less compared to other annotated parameters, which are
type-checked 3.04% and 3.64% of the time in JS/TS and Python, re-
spectively. More than 70% gradually typed projects do not perform
any type checks on primitive annotated parameters at all, i.e., 9,923
and 2,857 projects in JS/TS and Python, respectively. We believe this
to be concerning, considering that most attacks, such as injections
or ReDoS, require a string payload.

The final aspect we study here is how commonly developers
implement type checks that enforce type annotations. On aver-
age, this happens for 0.16% and 0.44% of all annotated parameters
in JS/TS and Python, respectively. Overall, there are 11,847 JS/TS
projects and 2,779 Python projects with type hints that do not have
a single enforcing type check. Figure 5a plots the distribution of
the total number of parameters for these projects. In some sense, it
illustrates how much type information potentially goes to waste
because none of the type hints present in these projects are strictly
enforced at runtime. In Section 5, we further discuss how leveraging
this untapped potential could simultaneously improve type safety
and alleviate the type-checking burden for developers.
Type annotations are rarely enforced in practice. Primitive
type annotations are particularly unlikely to be enforced, with
more than 70% of projects not type-checking a single primitive
annotated parameter.

F JS/TS Python

𝐹𝑈𝑁𝑡𝑟𝑎𝑛𝑠
avg 7.6 9.83
med 0 0

𝐹𝑈𝑁𝑢𝑛𝑎𝑛𝑛𝑅𝑓 𝑠
avg 6.17 1.82
med 0 0

𝐹𝑈𝑁𝑎𝑛𝑛𝑅𝑓 𝑠
avg 5.32 2.28
med 0 0

Table 4: Probabilities (in %) of transition functions and re-
mote flow sinks to be type checked (𝑃 (𝑇𝐶 (𝑓 ) | 𝑓 ∈ F )).

4.3 RQ3: Type Safety
In Section 4.1, we already discussed that some projects feature
a high number of transition functions (see Figure 5b). There, we
also discussed that transition functions are particularly susceptible
to type errors. To learn if developers are aware of this problem,
we compute how often transition functions feature type checks
on their parameters. Note that we only consider projects with
type hints in this part of the study. Table 4 shows that less than
10% of the transition functions are type-checked, with the median
being at 0%, indicating that developers are typically unaware of
transition functions and their inherent issues regarding type safety.
This observation is not surprising, considering that identifying
transition functions can be challenging for developers since the
compiler does not produce any warnings hinting at them.

Looking at remote flow sinks, the situation only gets worse.
Figure 5c shows the distribution of the total number of remote flow
sinks per project, with a logarithmic scale applied to the x-axis to
emphasize the outliers with the highest number of remote flow
sinks. We see again that while most projects have few or no RFS
at all, there are individual cases with well above 50, and for some
JS/TS projects, well above 100 functions reached by remote data
flow. Looking at the probabilities of remote flow sinks to be type-
checked, listed in Table 4, we can see that RFS are even less likely
to be type-checked than transition functions on average: in JS/TS,
only 6.19% of unannotated RFS and 5.33% of the annotated RFS
functions are type checked. In Python, these figures are even lower,

8



Typed and Confused: Studying the Unexpected Dangers of Gradual Typing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

i.e., 1.82% and 2.28%, respectively. The median of each of these
probabilities is 0, i.e., most projects with RFS do not type-check
them at all, regardless of whether or not they are annotated. Our
only explanation for this finding is that either developers tend to
blindly trust that data coming from remote flow sources is verified
before reaching the functions we identify as remote flow sinks, or
they are unaware of the fact that user- (i.e., attacker-) controlled
data can make its way into these functions and potentially cause
severe issues due to the lack of explicit type checks.

Transition functions and RFS are infrequently type-checked
in practice. Type annotations do not significantly affect the
likelihood of RFS functions to be type-checked.

4.4 RQ4: Security Implications
Aiming to confirm some of our empirical findings, we look for
functions susceptible to type confusion in the 50 TypeScript projects
with the most annotated remote flow sinks. We further analyze
them using a query that reports all functions annotatedwith string
that process data coming from the body of a POST request. In the
following, we highlight one of these functions to demonstrate the
possible practical implications of gradual typing.
1 @Controller('workflows ')
2 export class WorkflowController {
3 @Post('generate ')
4 @HttpCode (200)
5 generateWorkflow(
6 @Query('api -version ') apiVersion: string ,
7 @Body('appType ') appType: string , ...) {
8 ...
9 this._validateAppType(appType);
10 ...
11 }
12 private _validateAppType(appType: string) {
13 const providedAppType = appType.toLocaleLowerCase ()
14 if (providedAppType !== AppType.WebApp &&

providedAppType !== AppType.FunctionApp) {
15 throw new HttpException(`Incorrect appType '${

appType}' provided.`, 400);
16 }
17 }

Listing 4: API endpoint in azure/azure-functions-ux that is
susceptible to type confusion.

Listing 4 is a simplified version of the workflows/generate API
endpoint in the azure/azure-functions-ux8 project. It passes
the POST request body’s appType property (line 9) to the func-
tion _validateAppType (line 12). This function passes its input
to toLocaleLowerCase (line 13). Note that this function is only
defined on strings, so invoking it, e.g., on an array, results in an
unhandled type error. To confirm this, we set up the project lo-
cally, following the README instructions to get the application
running in a development environment. We then sent two POST
requests to the URL corresponding to the API endpoint9. Send-
ing {"appType": "foo"}, causes the server to respond with "400:
Incorrect appType ’foo’ provided.", which confirms that
we can remotely interact with the targeted function. Sending the

8https://github.com/Azure/azure-functions-ux/tree/dev/server/src/workflows
9https://localhost:44400/workflows/generate?api-version=2020-12-01

payload {"appType": ["foo"]}, however, results in a different
response: "500: Internal server error". This happens because
the program tries to invoke the toLocaleLowerCase function on
an array instead of a string, which is undefined. This results in an
unhandled error being thrown, confirming that we can remotely
violate the string type annotation. At the time of writing, we are
in the process of reporting the issue to the project maintainers. In
total, we identified 33 functions that process user input without
type-checking it in four of the 50 manually-analyzed repositories.
Seven of these 33 functions exhibit similar behavior to the function
highlighted in Listing 4. Unfortunately, we could only set up the
azure-functions-ux project discussed above, which means that
the exploitability of the other cases remains unconfirmed. In the
other cases, we were either unable to properly set up the applica-
tions, or other mechanisms like access control and authentication
prevented us from sending POST requests to the targeted API end-
points from outside the app. In this case, it becomes much harder to
send arbitrary data to these endpoints, which means that while in-
dividual functions, in isolation, may be prone to type errors due to a
lack of type checks, the issues often seem to be mitigated in practice
by other mechanisms preventing users from sending ill-typed data
to the corresponding endpoints.

Due to time constraints, we restricted our manual investigation
to string annotated remote flow sinks, making it easy for us to tell
if a function is potentially susceptible to type confusion. Yet, even
under these strict constraints, we find multiple functions processing
user-controlled data without checking its data type. One can likely
discover many more such functions by considering other sources
of user-controlled data and more complex type annotations. Nev-
ertheless, our results provide preliminary evidence that attackers
can trigger type confusion remotely, even in the presence of type
annotations, thus violating developers’ expectations. Type confu-
sion can function as a building block for more complex attacks.
For instance, it can allow an attacker to bypass input validation, as
illustrated by CVE-2020-28477. Moreover, type confusion can be
leveraged to hijack the control flow [49] by calling a different func-
tion than the one developers intended, as the example in Listing 4
illustrates. If the target function is defined on the attacker-chosen
type in the application’s context, the JavaScript runtime will invoke
that function instead. This allows attackers to stir the program’s
execution to unexpected locations, potentially enabling code reuse
attacks [13, 49]. We firmly believe that these observations warrant
further research on the security implications of gradual typing.

Attackers can remotely violate type annotations, causing type
confusion. We identify 33 annotated functions processing user-
controlled data without type-checking it in 50 real-world Type-
Script projects. Six of these functions can cause unexpected
behavior when processing data other than strings. We demon-
strate this behavior for one of the functions.

4.5 Limitations
To put our findings into perspective, we now discuss the limita-
tions of our study. In particular, we identify the following potential
sources of false positives (FP) and false negatives (FN) in our static
analysis:

9

https://github.com/Azure/azure-functions-ux/tree/dev/server/src/workflows


ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Troppmann et al.

Type checks. While identifying built-in type-checking function-
ality, such as special keywords and function calls, is covered by
CodeQL’s API, we extended our query to account for some cus-
tom type checks, too. To this end, we consider as type checks
functions that are named following the pattern is[A-Z].*, such
as isString. To assess the utility of this heuristic, we collect the
list of all calls to custom type checks our query identifies in the
JS dataset. The ten most commonly called functions are isArray,
isFunction, isObject, isString, isNaN, isDef, isPlainObject,
isUndefined, isBuffer, and isDefined. These functions all pro-
vide type-checking functionality and account for more than half
of the 542,448 function calls to custom type checks identified by
our query. Beyond that, we find very few functions where the
name suggests they might not be a type check, one example being
isInJSFile with merely 441 occurrences. We firmly believe that
the benefit of capturing a significant portion of custom type checks
justifies the cost of some false positives, i.e., slightly overestimating
the prevalence of explicit type checks.

CodeQL. We rely on CodeQL’s built-in libraries to identify type
annotations. We identify transition functions by checking whether
an annotated function is called at any point by an unannotated
function using CodeQL’s callgraph. Limitations of CodeQL’s call-
graph may thus cause us to over- or undercount the true number
of transition functions. Additionally, we use CodeQL’s dataflow
analysis to match parameters to type-checks and the predefined
RemoteFlowSource as a proxy for user-controlled data. In summary,
our static analysis is limited by CodeQL’s callgraph and its ability
to reason about control-/dataflow. However, CodeQL is widely used
in the industry and is often considered state-of-the-art in academic
studies [8, 31, 37]. Considering that these sources of FP/FN (i.e.,
over-/undercounting) apply equally to annotated and unannotated
code, these limitations should only minimally affect our analysis,
which focuses primarily on comparing annotated and unannotated
parameters.

5 DISCUSSION
In this section, we contextualize our findings and identify avenues
for future work on practical gradual typing of scripting languages.

Overall, we argue that unsound gradual typing might violate de-
velopers’ expectations and even lead to security issues. We find that
developers rarely type check at transition functions between typed
and untyped code or at code locations where user input is processed.
Moreover, when parameters are annotated with primitive types,
they are extremely unlikely to be type-checked. While our results
are coarse-grained and post-factum, future work should perform
user studies with developers to further explore this hypothesis.

Either way, we believe that current unsound gradual type sys-
tems miss many automation opportunities. We observe that devel-
opers unevenly add enforcing type checks to their code base. At
least some of these could be added automatically by the compiler,
reducing the code’s footprint. We believe that type hints capture
developers’ expectations efficiently and can be used to correct type-
checking omissions or mistakes.

Sound gradual typing [29, 44, 46, 50, 57] seems like a natural way
to avoid the identified developers’ confusion, i.e., make the type
system behave more in line with developers’ expectation. However,

Takikawa et al. [51] argue that adding runtime type checks uni-
formly might lead to significant performance penalties. Thus, in the
spirit of soundiness [32], we encourage the community to explore
partial solutions in which type checks are only generated in certain
well-defined cases. Even if only a small portion of annotations are
automatically enforced, we argue that the benefits would be sig-
nificant. We make several proposals for such pragmatic solutions,
which future work might explore:

• Proposal 1: Only generate type checks for transition func-
tions. This solution would require the construction of an
annotated call graph like the one in Figure 4, and call graphs
are notoriously imprecise for scripting languages [2]. We
argue, however, that a small amount of spurious edges are
not problematic because they only result in redundant type
checks. On the other hand, missing edges are a bigger prob-
lem, and the solution would need to quantify the likelihood
that a given function definition has an incoming missing
edge to place a type check.

• Proposal 2: Only generate type checks for remote flow
sources. While a general-purpose compiler like TypeScript
would struggle with implementing such a policy, more spe-
cialized solutions could use existing security analyses to
identify annotated parameters containing user data.

• Proposal 3: Only generate type checks for values that reach
a security-relevant API. Similarly, one can employ backward
data flow analysis from sinks to identify annotated parame-
ters that reach these program locations and further place a
type check before the sink call.

• Proposal 4: Use statistical models or code smells to selec-
tively generate type checks for functions likely to process
attacker-control data. Instead of relying on a precise anal-
ysis to identify values that control user data or that flow
into sensitive API, the compiler can predict how likely a
given annotated value matches this condition based on the
surrounding code context.

While none of these proposals are perfect, we believe they strike
a promising trade-off between performance and type safety. Overall,
we hope that our results are a call to arms for the community to
explore pragmatic solutions that can more efficiently capitalize on
the available type hints to reduce the likelihood of type confusion.

6 RELATEDWORK
This section highlights closely relatedwork, focusing on the benefits
and drawbacks of static typing, type-related issues, deserialization
problems, and gradual typing.

Effects of Static Typing. The primary benefit of static typing
is that it effectively reduces the number of bugs in a program
[17, 40, 45]. Gao et al. [17] show that 15% of bugs in open-source
JavaScript projects can be prevented by using type annotations and
static type checkers such as Flow and TypeScript. Ray et al. [45]
study how the choice of programming language affects software
quality and find that statically typed code, i.e., code with type anno-
tations, is less defect-prone than dynamically typed code. Bogner
and Merkel [5] challenge these findings by showing that TypeScipt
code does not have fewer bugs overall compared to unannotated
JavaScript code. Prechelt et al. [1] come to a similar conclusion after

10



Typed and Confused: Studying the Unexpected Dangers of Gradual Typing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

conducting an experiment where they asked 40 computer science
students to write a non-trivial programming task in ANSI C, which
features static type checking, and in K&R C, which does not fea-
ture static type checking. They found that the ANSI C programs
contained significantly fewer bugs. Hanenberg et al. [26, 34] also
observe a positive effect of static typing on code maintainability and
usability by conducting two distinct yet similar experiments where
27 individuals were asked to perform various programming tasks.
The authors find that the presence of type annotations can signif-
icantly reduce the time it takes the subjects to complete specific
tasks compared to dynamically typed environments. While these
studies are similar to our approach, none assess how type annota-
tions affect type-checking practices or discuss potential security
implications.

While static typing undeniably offers considerable benefits, it
comes at the cost of imposing a potentially significant annotation
burden on the developers [9, 17, 35, 36]. Ore et al. present an em-
pirical study on 71 subjects to assess this type annotation burden
[35, 36]. The subjects were given 20 random code artifacts they had
to annotate with physical unit types. They find that their subjects
only choose the correct type annotation 51% of the time while tak-
ing 136 seconds on average per correct annotation. The authors
conclude that correctly annotating code with data types is both
error-prone and time-intensive. This observation is confirmed by
the findings of Gao et al. [17] showing that, on average, it takes
231.4 and 306.8 seconds to fully annotate one variable for Flow and
TypeScript, respectively. The highlighted studies are similar to ours,
as they, too, study the drawbacks of type annotations. In contrast,
our analysis focuses specifically on the effect of type annotations
on type-checking prevalence and practices.

Type-Related Bugs. The second major category of related work
concerns the study of different kinds of type-related issues [10,
15, 20, 24, 28, 42, 43]. These works demonstrate the severe conse-
quences of type-related issues when data types are left unchecked.
Pradel et al. [42] define type inconsistencies for JavaScript and iden-
tify them as likely problems in dynamically typed languages. They
also present TypeDevil, a dynamic analysis tool capable of finding
type inconsistencies in JavaScript programs. Similarly, Haller et
al. [20] propose TypeSan, an LLVM-based type confusion detector
for C++ that incurs minimal runtime overhead. Type-confusion in
C++, in general, is a well-studied field with several studies about
this newly emerging attack vector and possible countermeasures
[15, 24, 28]. Finally, Chen et al. [10] present a study in which they
identify six types of dynamic typing-related practices in Python
programs that are, at the same time, common and risky. While
part of our study is also about identifying type-related issues in
real-world programs, we are more interested in understanding if
gradual typing factors into the prevalence of type-related issues.

Type-Related Security Vulnerabilities. The most infamous type-
related security problems are deserialization issues, in which at-
tackers send objects of unexpected type to a remote application,
triggering unsafe deserialization code. These problems are com-
mon in PHP [12, 13], Java [22], .NET [48] and Android [38]. More
recently, they also surfaced in JavaScript in a rather unexpected
form. Prototype pollution attacks [4, 25, 30, 49] define properties on
important built-in objects, which results in changing the dynamic

types of most objects in the runtime due to JavaScript’s prototype
inheritance. Similarly, hidden property abuses [59] allow attackers
to remotely send objects with unexpected properties that confuse
vulnerable code that processes them. Recently, David et al. [14]
proposed mitigating deserialization issues with static typing. While
related, these studies do not explore the relationship between the
code’s unsound gradual typing and explicit type checks.

Gradual Typing. In the last decade, many sound gradual type
systems were proposed for scripting languages. Lerner et al. [29]
propose a modular system for experimenting with different type
systems for JavaScript. Swamy et al. [50] were the first to propose
a sound type system similar to TypeScript, albeit simpler, but with
residual runtime checks. Vitousek et al. [57] propose a similar sys-
tem for Python. Furthermore, Rastogi et al. [44] propose actually
extending TypeScript with runtime checks while maintaining good
runtime performance. Richards et al. [46] propose another exten-
sion for TypeScript that allows users to configure the amount of
generated type checks. To the best of our knowledge, most of these
proposals were never implemented in mainstream gradual type
systems like TypeScript, mostly due to high-performance cost [51].
Nonetheless, Bauman et al. [3] and Vitousek et al. [58] show that a
just-in-time compiler could alleviate this cost. Feldthaus et al. [16]
observe that in the absence of a sound type system that produces
runtime errors, type hints might contain subtle bugs themselves,
which need to be checked against runtime behavior. To avoid this
altogether, there is a plethora of recent work on automatic type in-
terference for dynamic languages [21, 33, 39, 41, 60]. While closely
related, none of this work aims to measure the subtle impact of
unsound gradual type systems on explicit type checks in the code.

7 CONCLUSION
In this paper, we studied the prevalence of gradual typing, how it
affects type checks in practice, and its security implications. We
learned that it is already widely adopted, but only a minor portion
of the code bases is typically annotated. While our initial suspicion
that gradual typing may negatively affect type-checking practices
was only partially confirmed, we observed that developers rarely
implement explicit type checks to enforce data types at runtime,
even in functions particularly susceptible to type errors. Therefore,
we see a lot of potential to improve the overall type safety of dy-
namically typed code by automatically generating some runtime
checks to enforce type annotations. With this work, we aim to raise
awareness about the current limitations and missed opportunities
of the practical implementations of gradual typing. Ideally, future
iterations of such systems will consider the identified shortcomings
and rectify them, so developers may derive even greater benefits
from gradual typing than they already do.

ACKNOWLEDGMENTS
This work was conducted in the scope of a dissertation at the
Saarbrücken Graduate School of Computer Science.

REFERENCES
[1] 1998. A controlled experiment to assess the benefits of procedure argument type

checking. IEEE Transactions on Software Engineering 24, 4 (1998), 302–312.
[2] Gabor Antal, Péter Hegedüs, Zoltán Tóth, Rudolf Ferenc, and Tibor Gyimóthy.

2018. [Research Paper] Static JavaScript Call Graphs: A Comparative Study. In
11



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Troppmann et al.

18th IEEE International Working Conference on Source Code Analysis and Manipu-
lation, SCAM 2018, Madrid, Spain, September 23-24, 2018. IEEE Computer Society,
177–186.

[3] Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy G. Siek, and Sam Tobin-
Hochstadt. 2017. Sound gradual typing: only mostly dead. Proc. ACM Program.
Lang. 1, OOPSLA (2017), 54:1–54:24.

[4] Masudul Hasan Masud Bhuiyan, Adithya Srinivas Parthasarathy, Nikos Vasilakis,
Michael Pradel, and Cristian-Alexandru Staicu. 2023. SecBench.js: An Executable
Security Benchmark Suite for Server-Side JavaScript. In 45th IEEE/ACM Interna-
tional Conference on Software Engineering, ICSE 2023, Melbourne, Australia, May
14-20, 2023. IEEE, 1059–1070.

[5] Justus Bogner and Manuel Merkel. 2022. To Type or Not to Type? A Systematic
Comparison of the Software Quality of JavaScript and TypeScript Applications
on GitHub. In 19th IEEE/ACM International Conference on Mining Software Repos-
itories, MSR 2022, Pittsburgh, PA, USA, May 23-24, 2022. ACM, 658–669.

[6] Hudson Borges and Marco Tulio Valente. 2018. What’s in a github star? under-
standing repository starring practices in a social coding platform. Journal of
Systems and Software 146 (2018), 112–129.

[7] Hudson Borges, Marco Tulio Valente, Andre Hora, and Jailton Coelho. 2015.
On the popularity of GitHub applications: A preliminary note. arXiv preprint
arXiv:1507.00604 (2015).

[8] Tiago Brito, Mafalda Ferreira, Miguel Monteiro, Pedro Lopes, Miguel Barros,
José Fragoso Santos, and Nuno Santos. 2023. Study of javascript static analysis
tools for vulnerability detection in node. js packages. IEEE Transactions on
Reliability (2023).

[9] Patrice Chalin and Perry R James. 2007. Non-null references by default in Java:
Alleviating the nullity annotation burden. In European Conference on Object-
Oriented Programming. Springer, 227–247.

[10] Zhifei Chen, Yanhui Li, Bihuan Chen, Wanwangying Ma, Lin Chen, and Baowen
Xu. 2020. An empirical study on dynamic typing related practices in python
systems. In Proceedings of the 28th International Conference on Program Compre-
hension. 83–93.

[11] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects in
GitHub for MSR Studies. In 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021. IEEE, 560–564.

[12] Johannes Dahse and Thorsten Holz. 2014. Static Detection of Second-Order
Vulnerabilities in Web Applications. In Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014.

[13] Johannes Dahse, Nikolai Krein, and Thorsten Holz. 2014. Code Reuse Attacks
in PHP: Automated POP Chain Generation. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ,
USA, November 3-7, 2014.

[14] Yaniv David, Neophytos Christou, Andreas D Kellas, Vasileios P Kemerlis, and
Junfeng Yang. 2024. QUACK: Hindering Deserialization Attacks via Static Duck
Typing. In the Network and Distributed System Security Symposium (NDSS).

[15] Xiaokang Fan, Zeyu Xia, Sifan Long, Chun Huang, and Canqun Yang. 2020.
Accelerating type confusion detection with pointer analysis. IAENG International
Journal of Computer Science 20 (2020), 664–671.

[16] Asger Feldthaus and Anders Møller. 2014. Checking correctness of TypeScript
interfaces for JavaScript libraries. In Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014.

[17] Zheng Gao, Christian Bird, and Earl T Barr. 2017. To type or not to type: quantify-
ing detectable bugs in JavaScript. In 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE). IEEE, 758–769.

[18] Guido van Rossum, Ivan Levkivskyi. 2014. PEP 483. https://peps.python.org/pep-
0483/.

[19] Guido van Rossum, Jukka Lehtosalo , Łukasz Langa. 2014. PEP 484. https:
//peps.python.org/pep-0484/.

[20] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuffrida, Her-
bert Bos, and Erik Van Der Kouwe. 2016. TypeSan: Practical type confusion
detection. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. 517–528.

[21] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis. 2018.
Deep learning type inference. In Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, No-
vember 04-09, 2018, Gary T. Leavens, Alessandro Garcia, and Corina S. Pasareanu
(Eds.). ACM, 152–162.

[22] Philipp Holzinger, Stefan Triller, Alexandre Bartel, and Eric Bodden. 2016. An
In-Depth Study of More Than Ten Years of Java Exploitation. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016.

[23] https://zenodo.org/doi/10.5281/zenodo.13374364 2024. Replication artifact.
[24] Yuseok Jeon, Priyam Biswas, Scott Carr, Byoungyoung Lee, and Mathias Payer.

2017. Hextype: Efficient detection of type confusion errors for c++. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
2373–2387.

[25] Zifeng Kang, Song Li, and Yinzhi Cao. 2022. Probe the Proto: Measuring Client-
Side Prototype Pollution Vulnerabilities of One Million Real-world Websites. In
29th Annual Network and Distributed System Security Symposium, NDSS 2022, San
Diego, California, USA, April 24-28, 2022.

[26] Sebastian Kleinschmager, Romain Robbes, Andreas Stefik, Stefan Hanenberg,
and Eric Tanter. 2012. Do static type systems improve the maintainability of
software systems? An empirical study. In 2012 20th IEEE International Conference
on Program Comprehension (ICPC). IEEE, 153–162.

[27] Nikolaos Koutroumpouchos, Georgios Lavdanis, Eleni Veroni, Christoforos Ntan-
togian, and Christos Xenakis. 2019. ObjectMap: Detecting insecure object de-
serialization. In Proceedings of the 23rd Pan-Hellenic Conference on Informatics.
67–72.

[28] Byoungyoung Lee, Chengyu Song, Taesoo Kim, and Wenke Lee. 2015. Type
casting verification: Stopping an emerging attack vector. In 24th USENIX Security
Symposium (USENIX Security 15). 81–96.

[29] Benjamin S. Lerner, Joe Gibbs Politz, Arjun Guha, and Shriram Krishnamurthi.
2013. TeJaS: retrofitting type systems for JavaScript. In DLS’13, Proceedings of
the 9th Symposium on Dynamic Languages, part of SPLASH 2013, Indianapolis, IN,
USA, October 26-31, 2013.

[30] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. 2021. Detecting Node.js
prototype pollution vulnerabilities via object lookup analysis. In ESEC/FSE ’21:
29th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering.

[31] Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. 2022. An empirical
study on the effectiveness of static C code analyzers for vulnerability detection.
In Proceedings of the 31st ACM SIGSOFT international symposium on software
testing and analysis. 544–555.

[32] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták, José Nel-
son Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders
Møller, and Dimitrios Vardoulakis. 2015. In defense of soundiness: a manifesto.
Commun. ACM 58, 2 (2015), 44–46.

[33] Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. 2019. NL2Type: inferring
JavaScript function types from natural language information. In Proceedings of
the 41st International Conference on Software Engineering, ICSE 2019, Montreal,
QC, Canada, May 25-31, 2019. IEEE / ACM, 304–315.

[34] Clemens Mayer, Stefan Hanenberg, Romain Robbes, Éric Tanter, and Andreas
Stefik. 2012. An empirical study of the influence of static type systems on the
usability of undocumented software. ACM Sigplan Notices 47, 10 (2012), 683–702.

[35] John-Paul Ore, Carrick Detweiler, and Sebastian Elbaum. 2021. An empirical
study on type annotations: Accuracy, speed, and suggestion effectiveness. ACM
Transactions on Software Engineering and Methodology (TOSEM) 30, 2 (2021),
1–29.

[36] John-Paul Ore, Sebastian Elbaum, Carrick Detweiler, and Lambros Karkazis.
2018. Assessing the type annotation burden. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 190–201.

[37] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2022. Asleep at the keyboard? assessing the security of github
copilot’s code contributions. In 2022 IEEE Symposium on Security and Privacy
(SP). IEEE, 754–768.

[38] Or Peles and Roee Hay. 2015. One Class to Rule Them All: 0-Day Deserialization
Vulnerabilities in Android. In 9th USENIX Workshop on Offensive Technologies,
WOOT ’15, Washington, DC, USA, August 10-11, 2015.

[39] Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun
Guha. 2021. Solver-based gradual type migration. Proc. ACM Program. Lang. 5,
OOPSLA (2021), 1–27.

[40] Benjamin C Pierce. 2002. Types and programming languages.
[41] Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. 2020. Type-

Writer: neural type prediction with search-based validation. In ESEC/FSE ’20:
28th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020.
ACM, 209–220.

[42] Michael Pradel, Parker Schuh, and Koushik Sen. 2015. TypeDevil: Dynamic type
inconsistency analysis for JavaScript. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 1. IEEE, 314–324.

[43] Michael Pradel and Koushik Sen. 2015. The good, the bad, and the ugly: An
empirical study of implicit type conversions in JavaScript. In 29th European
Conference on Object-Oriented Programming (ECOOP 2015). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[44] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin M. Bierman, and Panagiotis
Vekris. 2015. Safe & Efficient Gradual Typing for TypeScript. In Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015.

[45] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014.
A large scale study of programming languages and code quality in github. In
Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of
software engineering. 155–165.

12

https://peps.python.org/pep-0483/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://zenodo.org/doi/10.5281/zenodo.13374364


Typed and Confused: Studying the Unexpected Dangers of Gradual Typing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

[46] Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. 2015. Concrete Types
for TypeScript. In 29th European Conference on Object-Oriented Programming,
ECOOP 2015, July 5-10, 2015, Prague, Czech Republic.

[47] Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon. 2023. An in-depth
study of java deserialization remote-code execution exploits and vulnerabilities.
ACM Transactions on Software Engineering and Methodology 32, 1 (2023), 1–45.

[48] Mikhail Shcherbakov and Musard Balliu. 2021. SerialDetector: Principled and
Practical Exploration of Object Injection Vulnerabilities for the Web. In 28th
Annual Network and Distributed System Security Symposium, NDSS 2021, virtually,
February 21-25, 2021.

[49] Mikhail Shcherbakov, Musard Balliu, and Cristian-Alexandru Staicu. 2023. Silent
Spring: Prototype Pollution Leads to Remote Code Execution in Node.js. In
USENIX Security Symposium.

[50] Nikhil Swamy, Cédric Fournet, Aseem Rastogi, Karthikeyan Bhargavan, Juan
Chen, Pierre-Yves Strub, and Gavin M. Bierman. 2014. Gradual typing embedded
securely in JavaScript. In The 41st Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January
20-21, 2014.

[51] Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and
Matthias Felleisen. 2016. Is sound gradual typing dead?. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. ACM, 456–
468.

[52] https://madnight.github.io/githut/#/pull_requests/2024/1 2024. GitHut 2.0
GitHub pullrequests by language.

[53] https://pypl.github.io/PYPL.html 2024. PopularitY of Programming Languages
(PYPL).

[54] https://www.jetbrains.com/lp/devecosystem-2022/ 2022. JetBrains The State of
the Developer Ecosystem 2022.

[55] https://www.tiobe.com/tiobe-index/ 2024. TIOBE Index.
[56] https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html#

a-typed-superset-of-javascript 2024. TypeScript Handbook.
[57] Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. 2014.

Design and evaluation of gradual typing for python. In DLS’14, Proceedings of the
10th ACM Symposium on Dynamic Languages, part of SLASH 2014, Portland, OR,
USA, October 20-24, 2014.

[58] Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. 2019. Optimizing and
evaluating transient gradual typing. In Proceedings of the 15th ACM SIGPLAN
International Symposium onDynamic Languages, DLS 2019, Athens, Greece, October
20, 2019.

[59] Feng Xiao, Jianwei Huang, Yichang Xiong, Guangliang Yang, Hong Hu, Guofei
Gu, and Wenke Lee. 2021. Abusing hidden properties to attack the node. js
ecosystem. In 30th USENIX Security Symposium (USENIX Security 21). 2951–2968.

[60] Yanyan Yan, Yang Feng, Hongcheng Fan, and Baowen Xu. 2023. DLInfer: Deep
Learning with Static Slicing for Python Type Inference. In 45th IEEE/ACM In-
ternational Conference on Software Engineering, ICSE 2023, Melbourne, Australia,
May 14-20, 2023. IEEE, 2009–2021.

13

https://madnight.github.io/githut/#/pull_requests/2024/1
https://pypl.github.io/PYPL.html
https://www.jetbrains.com/lp/devecosystem-2022/
https://www.tiobe.com/tiobe-index/
https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html#a-typed-superset-of-javascript
https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html#a-typed-superset-of-javascript

	Abstract
	1 Introduction
	2 Background
	2.1 The Case of CVE-2020-28477
	2.2 Where Type Checks Matter

	3 Methodology
	3.1 Sampling
	3.2 Static Analysis
	3.3 Manual Investigation

	4 Results
	4.1 RQ1: Prevalence of Gradual Typing
	4.2 RQ2: Effect on Type-Checking
	4.3 RQ3: Type Safety
	4.4 RQ4: Security Implications
	4.5 Limitations

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

